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1 Fourier coefficients

Let V be a finite dimensional inner product space and let B = {w1, . . . , wn} be an orthonor-
mal basis for V. Then for any v ∈ V, there exist c1, . . . , cn ∈ F such that v = ∑i ci · wi. The
coefficients ci are often called Fourier coefficients (of v, with respect to the basis B). Using
the orthonormality and the properties of the inner product, we get

Proposition 1.1 Let B = {w1, . . . , wn} be an orthonormal basis for V, and let v ∈ V be express-
ible as v = ∑n

i=1 ci · wi. Then, for all i ∈ [n], we must have ci = 〈wi, v〉.

This can be used to prove the following

Proposition 1.2 (Parseval’s identity) Let V be a finite dimensional inner product space and let
{w1, . . . , wn} be an orthonormal basis for V. Then, for any u, v ∈ V

〈u, v〉 =
n

∑
i=1
〈wi, u〉 · 〈wi, v〉 .

Exercise 1.3 Prove that the set of functions

S = {1/2} ∪ {sin(kπx) | k ∈N, k ≥ 1} ∪ {cos(kπx) | k ∈N, k ≥ 1} ,

is an orthonormal set in the Hilbert space of continuous real-valued functions mapping [−1, 1] to
R (denoted C ([−1, 1], R)) under the inner product 〈 f , g〉 =

∫ 1
−1 f (x)g(x)dx.

In fact, the above functions form an orthonormal (Hilbert) basis for the space C ([−1, 1], R),
and are often referred to as the Fourier basis functions in signal analysis.

Parseval’s identity can also be used to show that the size of the set large Fourier coeffi-
cients is small, and this is often very useful in ”truncating” a signal to its large Fourier
coefficients.

Exercise 1.4 Let B = {w1, . . . , wn} be an orthonormal basis for a Hilbert space V. Let v ∈ V
with ‖v‖ = 1 be expressed as v = ∑i ci · wi. Then show that for any δ > 0

|{i | |ci| ≥ δ}| ≤ 1
δ2 .
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2 Adjoints

Definition 2.1 Let V, W be inner product spaces over the same field F and let ϕ : V → W be a
linear transformation. A transformation ϕ∗ : W → V is called an adjoint of ϕ if

〈w, ϕ(v)〉 = 〈ϕ∗(w), v〉 ∀v ∈ V, w ∈W .

Example 2.2 Let V = W = Cn with the inner product 〈u, v〉 = ∑n
i=1 ui · vi. Let ϕ : V → V be

represented by the matrix A. Then ϕ∗ is represented by the matrix AT.

Example 2.3 Let V = C([0, 1], [−1, 1]) with the inner product defined as 〈 f1, f2〉 =
∫ 1

0 f1(x) f2(x)dx,
and let W = C([0, 1/2], [−1, 1]) with the inner product 〈g1, g2〉 =

∫ 1/2
0 g1(x)g2(x)dx. Let

ϕ : V →W be defined as ϕ( f )(x) = f (2x). Then, ϕ∗ : W → V can be defined as

ϕ∗(g)(y) = (1/2) · g(y/2) .

Exercise 2.4 Let ϕleft : Fib → Fib be the left shift operator as before, and let 〈 f , g〉 for f , g ∈ Fib
be defined as 〈 f , g〉 = ∑∞

n=0
f (n)g(n)

Cn for C > 4. Find ϕ∗left.

We will prove that every linear transformation has a unique adjoint. However, we first
need the following characterization of linear transformations from V to F.

Proposition 2.5 (Riesz Representation Theorem) Let V be a finite-dimensional inner product
space over F and let α : V → F be a linear transformation. Then there exists a unique z ∈ V such
that α(v) = 〈z, v〉 ∀v ∈ V.

We only prove the theorem here for finite-dimensional spaces. However, the theorem
holds for any Hilbert space, as long as the linear transformation is “continuous”’.

Proof: Let {w1, . . . , wn} be an orthonormal basis for V. Then check that

z =
n

∑
i=1

α(wi) · wi

must be the unique z satisfying the required property.

This can be used to prove the following:

Proposition 2.6 Let V, W be finite dimensional inner product spaces and let ϕ : V → W be a
linear transformation. Then there exists a unique ϕ∗ : W → V, such that

〈w, ϕ(v)〉 = 〈ϕ∗(w), v〉 ∀v ∈ V, w ∈W .
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Proof: For each w ∈W, the map 〈w, ϕ(·)〉 : V → F is a linear transformation (check!) and
hence there exists a unique zw ∈ V satisfying 〈w, ϕ(v)〉 = 〈zw, v〉 ∀v ∈ V. Consider the
map β : W → V defined as β(w) = zw. By definition of β,

〈w, ϕ(v)〉 = 〈β(w), v〉 ∀v ∈ V, w ∈W .

To check that α is linear, we note that ∀v ∈ V, ∀w1, w2 ∈W,

〈β(w1 + w2), v〉 = 〈w1 + w2, ϕ(v)〉 = 〈w1, ϕ(v)〉+ 〈w2, ϕ(v)〉 = 〈β(w1), v〉+ 〈β(w2), v〉 ,

which implies β(w1 + w2) = β(w1) + β(w2) (why?) β(c · w) = c · β(w) follows similarly.

Note that the above proof only requires the Riesz representation theorem (to define zw),
and hence also works for Hilbert spaces (when ϕ is continuous).

2.1 Self-adjoint transformations

We first focus on a special class of linear transformations, where the transformation ϕ is
its own adjoint. Note that this requires that ϕ maps an inner-product space V to itself.
However, as we will see later, this special case turns out to be extremely useful. In fact,
the theory developed for these special transformations, also yields interesting results for
general linear transformations (which we will prove later).

Definition 2.7 A linear transformation ϕ : V → V is called self-adjoint if ϕ = ϕ∗. Note that
such a transformation necessarily needs to map v to itself, and is thus a linear operator.

Example 2.8 The transformation represented by matrix A ∈ Cn×n is self-adjoint if A = AT.
Such matrices are called Hermitian matrices.

The proposition below shows that self-adjoint transformations have some particularly nice
properties, which makes them very convenient to work with.

Proposition 2.9 Let V be an inner product space and let ϕ : V → V be a self-adjoint linear
operator. Then

- All eigenvalues of ϕ are real.

- If {w1, . . . , wn} are eigenvectors corresposnding to distinct eigenvalues then they are mutu-
ally orthogonal.
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Proof: The first property can be observed by noting that if v ∈ V \ {0V} is an eigenvector
with eigenvalue λ, then

λ · 〈v, v〉 = 〈v, λ · v〉 = 〈v, ϕ(v)〉 = 〈ϕ∗(v), v〉 = 〈ϕ(v), v〉 = λ · 〈v, v〉 .

Since 〈v, v〉 6= 0, we must have λ = λ which implies that λ ∈ R. For the second part,
observe that if i 6= j, then we have

λj ·
〈
wi, wj

〉
=
〈
wi, ϕ(wj)

〉
=
〈

ϕ∗(wi), wj
〉

=
〈

ϕ(wi), wj
〉

= λi ·
〈
wi, wj

〉
.

Since eigenvalues are real, we get (λi− λj) ·
〈
wi, wj

〉
= 0, which implies

〈
wi, wj

〉
= 0 using

λi 6= λj.

3 The Real Spectral Theorem

We can now prove the ”real spectral theorem” for self-adjoint operators ϕ : V → V (so
named because the eigenvalues of a self-adjoint operator are real, not because other spec-
tral theorems are fake!) We will show that any such operator is not only diagonalizable
(has a basis of eigenvectors) but is in fact orthogonally diagonalizable i.e., has an orthonormal
basis of eigenvectors. This gives a very convenient way of thinking about the action of
such operators. In particular, let dim(V) = n and {w1, . . . , wn} form an orthonormal basis
of eigenvectors for ϕ, with corresponding eigenvalues λ1, . . . , λn. Then for any vector v
expressible in this basis as (say) v = ∑n

i=1 ci · wi, we can think of the action of ϕ as

ϕ(v) = ϕ

(
n

∑
i=1

ci · vi

)
=

n

∑
i=1

ci · λi · wi .

Of course, we can also think of the action of ϕ in this way as long as w1, . . . , wn form a basis
(not necessarily orthonormal). However, this view is particularly useful when they form
an orthonormal basis. As we will later see, this also provides the “right” basis to think
about many matrices, such as the adjacency matrices of graphs (where such decomposi-
tions are the subject of spectral graph theory). To prove the spectral theorem, We will need
the following statement (which we’ll prove later).

Proposition 3.1 Let V be a finite-dimensional inner product space (over R or C) and let ϕ : V →
V be a self-adjoint linear operator. Then ϕ has at least one eigenvalue.

Using the above proposition, we will prove the spectral theorem below for finite dimen-
sional vector spaces. The proof below can also be made to work for Hilbert spaces (using
the axiom of choice). The above proposition, which gives the existence of an eigenvalue
is often proved differently for finite and infinite-dimensional spaces, and the proof for
infinite-dimensional Hilbert spaces requires additional conditions on the operator ϕ. We
first prove the spectral theorem assuming the above proposition.
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Proposition 3.2 (Real spectral theorem) Let V be a finite-dimensional inner product space and
let ϕ : V → V be a self-adjoint linear operator. Then ϕ is orthogonally diagonalizable.

Proof: By induction on the dimension of V. Let dim(V) = 1. Then by the previous
proposition ϕ has at least one eigenvalue, and hence at least one eigenvector, say w. Then
w/ ‖w‖ is a unit vector which forms a basis for V.

Let dim(V) = k + 1. Again, by the previous proposition ϕ has at least one eigenvector, say
w. Let W = Span ({w}) and let W⊥ = {v ∈ V | 〈v, w〉 = 0}. Check the following:

- W⊥ is a subspace of V.

- dim(W⊥) = k.

- W⊥ is invariant under ϕ i.e., ∀v ∈W⊥, ϕ(v) ∈W⊥.

Thus, we can consider the operator ϕ′ : W⊥ →W⊥ defined as

ϕ′(v) := ϕ(v) ∀v ∈W⊥ .

Then, ϕ′ is a self-adjoint (check!) operator defined on the k-dimensional space W⊥. By the
induction hypothesis, there exists an orthonormal basis {w1, . . . , wk} for W⊥ such that each
wi is an eigenvector of ϕ. Thus

{
w1, . . . , wk, w

‖w‖

}
is an orthonormal basis for V, comprising

of eigenvectors of ϕ.
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