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1 Diagonalizable Operators

In the previous lecture, we defined eigenvectors and eigenvalues for linear operators (trans-
formations mapping a space V to itself). We now define a class of operators where eigen-
vectors are particularly useful.

Definition 1.1 A transformation ¢ : V — V is said to be diagonalizable if there exists a basis of
V comprising of eigenvectors of ¢.

Example 1.2 The linear transformation defined by the matrix

2 0
=150

is diagonalizable since there is a basis for R? formed by the eigenvectors { (i) } and [ (1) ] .

Example 1.3 Any linear transformation ¢ : V. — V, with k distinct eigenvalues, where k =
dim(V'), is diagonalizable. This is because the corresponding eigenvectors vy, ..., vy with distinct
eigenvalues will be linearly independent, and since they are k linearly independent vectors in a
space with dimension k, they must form a basis.

Exercise 1.4 Recall that Fib = {f e RN | f(n) = f(n — 1) + f(n —2) Vn > 2}. Show that
@left © Fib — Fib is diagonalizable. Express the sequence by f(0) = 1, f(1) = 1and f(n) =
f(n—=1)+ f(n—2)Vn > 2 (known as Fibonacci numbers) as a linear combination of eigenvectors

of Pleft-

2 Inner Products

For the discussion below, we will take the field FF to be R or C since the definition of inner
products needs the notion of a “magnitude” for a field element (these can be defined more
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generally for subfields of R and C known as Euclidean subfields, but we shall not do so
here).

Definition 2.1 Let V be a vector space over a field IF (which is taken to be R or C). A function
u:V xV — Fisan inner product if

- The function p(u,-) : V. — IF is a linear transformation for every u € V.

- The function satisfies yu(u,v) = u(v,u).
- 1(v,v) € Rxg forallv € V and is 0 only for v = Oy.

We write the inner product corresponding to p as (u,v) .

Strictly speaking, the inner product should always be written as (u, U)H, but we usually
omit the # when the function is clear from context (or we are referring to an arbitrary inner
product).

Remark 2.2 It follows from the first and second properties above, that while the linear transforma-
tion p(u,-) : V.— T is linear, the transformation u(-,v) : V. — T defined by fixing the second
input, is “anti-linear” or “conjugate-linear” satisfying

w(uy +uz,v) = u(uy,v) + u(ug,v) and u(c-u,v)=c-u(u,v).
Example 2.3 The following are all examples of inner products:

- The function f_ll f(x)g(x)dx for f,g € C(|—1,1],R) (space of continuous functions from
[—1,1] to R).
- The function f_ll %%’;)dxfor f,g€C([-1,1,R).

- For x,y € R?, (x,y) = x1y1 + xoya is the usual inner product. Check that (x,y) =
2x1Yy1 + X2y2 + X1Y2/2 + x2y1/2 also defines an inner product.

Exercise 2.4 Let C > 4. Check that

n=0

defines an inner product on the space Fib.

We start with the following extremely useful inequality.



Proposition 2.5 (Cauchy-Schwarz-Bunyakovsky inequality) Let u, v be any two vectors in
an inner product space V. Then

(o) < (u,u)- (0,0)

Proof: To prove for general inner product spaces (not necessarily finite dimensional) we
will use the only inequality available in the definition i.e., (w,w) > 0 for all w € V. Taking
w = a-u+ b-vand using the properties from the definition gives

(w,w) = ((a-u+b-v),(a-u+b-v)) = aa-(u,u)+bb-(v,0)+ab-(u,v)+ab(v,u)

Taking a = (v,v) and b = — (v, u) = —(u,v) gives
(w,w) = (u,u) - (v,0) + |(1,0)]* - (v,0) =2+ |{1,0) - (v, 0)
= (o) ((wu)-(,0) = [(wo)) .

If v = Oy, then the inequality is trivial. Otherwise, we must have (v,v) > 0. Thus,

(w,w) >0 = (u,u)-(v,0) —|(u,0)* >0,

which proves the desired inequality. ]

An inner product also defines a norm ||v|| = 4/(v,v) and a hence a notion of distance
between two vectors in a vector space. This is a “distance” in the following sense.

Exercise 2.6 (Triangle inequality) Prove that for any inner product space V, and any vectors
uv,weV
lu —wl| < [lu—ol+o—w|.

This can be used to define convergence of sequences, and to define infinite sums and limits
of sequences (which was not possible in an abstract vector space). However, it might
still happen that the limit of a sequence of vectors in the vector space, which converges
according to the norm defined by the inner product, may not converge to a vector in the
space. Consider the following example.

Example 2 7 Consider the vector space C([—1,1],R) with the inner product defined by (f,g) =

f f(x)g(x)dx. Consider the sequence of functions:
-1 x € [-1,3})
ful) =4 nx x € [5h3)
1 xe [L1]



One can check that || f, — fu* = O(1) for m > n. Thus, the sequence converges. However,
the limit point is a discontinuous function not in the inner product space. To fix this prob-
lem, one can essentially include the limit points of all the sequences in the space (known
as the completion of the space). An inner product space in which all (Cauchy) sequences
converge to a point in the space is known as a Hilbert space. Many of the theorems we will
prove will generalize to Hilbert spaces though we will only prove some of them for finite
dimensional spaces.

3 Inequalities for inner products and distances

We start with the following extremely useful inequality.

Proposition 3.1 (Cauchy-Schwarz-Bunyakovsky inequality) Let u,v be any two vectors in
an inner product space V. Then

[(w0)* < (uu)-(v,0)

Proof: To prove for general inner product spaces (not necessarily finite dimensional) we
will use the only inequality available in the definition i.e., (w,w) > 0 for all w € V. Taking
w = a-u+b-vand using the properties from the definition gives

(w,w) = ((a-u+b-v),(a-u+b-v)) = aa-{(u,u)+bb-(v,0)+ab-(u,v)+ab(v,u)

Taking a = (v,v) and b = — (v, u) = —(u,v) gives
(w,w) = (u,u)-(0,0)° + | (,0) - (v,0) =2 [(u,0)|* - (v,0)
= (,0)- ((wu)-(0,0) = |(w,0)) .
If v = Oy, then the inequality is trivial. Otherwise, we must have (v,v) > 0. Thus,

(w,w) >0 = (u,u)-(v,0)—|(u,0)* >0,

which proves the desired inequality. |

An inner product also defines a norm ||v|| = /(v,v) and a hence a notion of distance
between two vectors in a vector space. This is a “distance” in the following sense.

Exercise 3.2 (Triangle inequality) Prove that for any inner product space V, and any vectors
u,o,weV
[ —wl| < [lu—ol+o—wl.



This can be used to define convergence of sequences, and to define infinite sums and limits
of sequences (which was not possible in an abstract vector space). However, it might
still happen that the limit of a sequence of vectors in the vector space, which converges
according to the norm defined by the inner product, may not converge to a vector in the
space. Consider the following example.

Example 3 3 Consider the vector space C([—1,1], R) with the inner product defined by (f, g) =
f f(x)g(x)dx. Consider the sequence of functions:

-1 x e [-1,3})
fulr) =4 nx x € [5h3)

One can check that || f, — fiu||* = O(1) for m > n. Thus, the sequence converges. However,
the limit point is a discontinuous function not in the inner product space. To fix this prob-
lem, one can essentially include the limit points of all the sequences in the space (known
as the completion of the space). An inner product space in which all (Cauchy) sequences
converge to a point in the space is known as a Hilbert space. Many of the theorems we will
prove will generalize to Hilbert spaces though we will only prove some of them for finite
dimensional spaces.

4 Orthogonality and orthonormality

Definition 4.1 Two vectors u, v in an inner product space are said to be orthogonal if (u,v) =

A set of vectors S C V is said to consist of mutually orthogonal vectors if (u,v) = 0 for all
u# v, uveS. Asetof S C V issaid to be orthonormal if (u,v) = 0 forallu # v, u,v € S
and ||ul| =1 forall u € S.

Proposition 4.2 A set S C V' \ {0y} consisting of mutually orthogonal vectors is linearly inde-
pendent.

Proof: Letvy,...,v, € Sand ¢y,...,c; € F be such that Zie[n] ¢; - v; = Oy. Taking inner
product with a vector v; for j € [n], we get that };¢; - (vj,v;) = 0. Since vectors in S
are mutually orthogonal, we get that (vj,v;) = 0 when i # j, which implies using the
previous equality that that ¢; (v, v;) = 0. Since v; # Oy, we must have (v;,v;) > 0, and
thus c¢; = 0. Also, since our choice of j was arbitrary, this is true for all j € [n], implying
¢ = -+ = ¢y = 0. Thus, the only way a finite linear combination of vectors from S equals
Oy, if all coefficients are 0 , which implies that S is linearly independent. |



Proposition 4.3 (Gram-Schmidt orthogonalization) Given a finite set {vy, ..., v, } of linearly
independent vectors, there exists a set of orthonormal vectors {w1, ..., wy} such that

Span ({w1,...,w,}) = Span ({vy,...,v,4}) .

Proof: By induction. The case with one vector is trivial. Given the statement for k vectors
and orthonormal {wj, ..., wy} such that

Span ({wy,...,w}) = Span ({v1,...,v}),

define
£ U1
U1 = U1 — Z (Wi, V1) -wi and Wry = T
i=1 [tk |
It is easy to check that the set {wy, ..., wy, 1} satisfies the required conditions. |

Corollary 4.4 Every finite dimensional inner product space has an orthonormal basis.

In fact, Hilbert spaces also have orthonormal bases (which are countable). The existence
of a maximal orthonormal set of vectors can be proved by using Zorn’s lemma, similar to
the proof of existence of a Hamel basis for a vector space. However, we still need to prove
that a maximal orthonormal set is a basis.

This follows because we define the basis slightly differently for a Hilbert space: instead of
allowing only finite linear combinations, we allow infinite ones. The correct way of saying
this is that is we still think of the span as the set of all finite linear combinations, then we
only need that for any v € V, we can get arbitrarily close to v using elements in the span
(a converging sequence of finite sums can get arbitrarily close to its limit). Thus, we only
need that the span is dense in the Hilbert space V. However, if the maximal orthonormal
set is not dense, then it is possible to show that it cannot be maximal. Such a basis is known
as a Hilbert basis.
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