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1 Specifying a Linear Transformation

While some times linear transformations are specified as matrices, the following gives a
more abstract way of characterizing a linear transformation.

Proposition 1.1 Let V, W be vector spaces over IF and let B be a basis for V. Let « : B — W
be an arbitrary map. Then there exists a unique linear transformation ¢ : V. — W satisfying
¢(v) = a(v) Vv € B.

The above can also be used to give a linear-algebraic solution to be beautiful problem from
[Mat10] (try it without reading the solution).

Problem 1.2 ([Mat10]) Let x be an irrational number. Use linear algebra to show that a rectangle
with sides 1 and /2 cannot be tiled with a finite number of non-overlapping squares.

We can now solve it given our current knowledge of linear algebra. Recall that R is a vector
space over Q and 1 and /2 are linearly independent elements of this vector space. Let us
assume that Sy, ..., S, are squares with side lengths /1, ..., ¢,, which tile the rectangle R.

Let S = Span ({1, ﬁ,fl,...,én})

Since there exists a basis for S containing 1 and /2, and since any map from this basis to
R defines a unique linear transformation, there exists a linear transformation ¢ : S — R
satisfying ¢(1) = 1 and @(1/2) = —1. Define the (area like) function # : S x S — R as
#(a,b) = ¢(a) - ¢(b). For a rectangle Ry with sides a,b € S, we use y(Rp) to denote p(a, b).

One can show that if we extend all line segments bounding the squares to the sides of R
then the sides of all new rectangles generated this way, lie in S and hence y is defined for
all these rectangles. Also, it is easy to check that y adds like area i.e., if a rectangle R3 is
splitin to Ry and Ry, then y(R3) = p(R1) + p(Rz). This gives

n

o(1)-9(V2) = u(R) = Y u(S;) = i«o(m)z,

i=1 i

which is a contradiction since the LHS is -1 while the RHS is non-negative.
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2 Kernel and Image of a Linear Transformation

Definition 2.1 Let ¢ : V. — W be a linear transformation. We define its kernel and image as:

- ker(¢) == {veV]g(v)=0nw}
- im(¢) = {¢(v) |veV}

Proposition 2.2 ker(¢) is a subspace of V and im(¢) is a subspace of W.

Proposition 2.3 (rank-nullity theorem) If V is a finite dimensional vector space and ¢ : V —
W is a linear transformation, then

dim(ker(¢)) + dim(im(¢)) = dim(V).
dim(im(¢)) is called the rank and dim(ker(¢)) is called the nullity of ¢.

Example 2.4 Consider the matrix A which defines a linear transformation from IFj to IF3:

Check that ker (¢) is a code which can recover from one bit of error.

A =

—_ o O
O = O
—_ = O
OO =
—_ 0 -
S = =
—_
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2
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3
- dim(ker(¢)) = 4.

1
~—

Check that this is also true for the (25 — 1) x k matrix Ay where the i column is the number
i written in binary (with the most significant bit at the top).

This code is known as the Hamming Code and the matrix A is called the parity-check matrix of the
code.

3 Eigenvalues and Eigenvectors

Definition 3.1 Let V be a vector space over the field IF and let ¢ : V. — V be a linear transforma-
tion. A € T is said to be an eigenvalue of ¢ if there exists v € V' \ {0y} such that ¢(v) = A - v.
Such a vector v is called an eigenvector corresponding to the eigenvalue A. The set of eigenvalues
of ¢ is called its spectrum:

spec(¢) = {A | A is an eigenvalue of ¢} .
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Example 3.2 Consider the matrix

2 0
m=150)

which can be viewed as a linear transformation from R? to R2. Note that
20 X1 o 2x1 — A X1
0 0 X2 - 0 o X2

is only satisfied if A = 0,x1 = 0 or A = 2,x, = 0. Thus spec(M) = {0,2}.

Example 3.3 It can also be the case that spec(¢) = @, as witnessed by the rotation matrix

M, — [cos@ —sm9]/

sinf cosf

when viewed as a linear transformation from R? to R?.

Example 3.4 Consider the following transformations:

- Differentiation is a linear transformation on the class of (say) infinitely differentiable real-

valued functions over [0, 1] (denoted by C*([0,1],R)). Each function of the form c - exp(Ax)
is an eigenvector with eigenvalue A. If we denote the transformation by ¢, then spec(@o) =
R.

We can also consider the transformation @1 : R[x] — R[x] defined by differentiation i.e., for
any polynomial P € R[x|, ¢1(P) = dP/dx. Note that now the only eigenvalue is 0, and

thus spec(¢) = {0}.

Consider the transformation Qe : RN — RN. Any geometric progression with common
ratio r is an eigenvector of Pieq with eigenvalue r (and these are the only eigenvectors for this
transformation).

Proposition 3.5 Let Uy = {v € V | ¢(v) = A-v}. Then for each A € F, U, is a subspace of V.

Note that Uy = {0y} if A is not an eigenvalue. The dimension of this subspace is called
the geometric multiplicity of the eigenvalue A.

Proposition 3.6 Let Ay, ..., Ay bedistinct eigenvalues of ¢ with associated eigenvectors vy, . .., V.
Then the set {vy, ..., v} is linearly independent.



Proof: We can prove via induction that for all € [k|, the subset {v1,...,v,} is inde-
pendent. The base case follws from the fact that v; # Oy, and thus {v;} is a linearly
independent set. For the induction step, assume that that the set {vy,...,,} is linearly
independent.

If the set {v1, ..., 0,41} is linearly dependent, there exist scalars cy, . .., c,+1 € FF such that
c1-01+ - +crq1° 041 = Oy.

Also, note that we must have at least one of ¢y, ..., ¢, # 0 (since v, # 0). Applying ¢ on
both sides gives
Ar-cr o1+ + A1 61U = Oy

Multiplying the first equality by A, and substracting the two gives
(M —=Aps1)-cr o+ (Ar—App1)er -0 = Oy

Since all the eigenvalues are distinct, and at least one of cy, ..., ¢, is non-zero, the above
shows that {v;,...,v,} is linearly dependent, which contradicts the inductive hypothesis.
Thus, the set vy, ..., v,4+1 must be linearly independent. [ |
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