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1 Specifying a Linear Transformation

While some times linear transformations are specified as matrices, the following gives a
more abstract way of characterizing a linear transformation.

Proposition 1.1 Let V, W be vector spaces over F and let B be a basis for V. Let α : B → W
be an arbitrary map. Then there exists a unique linear transformation φ : V → W satisfying
φ(v) = α(v) ∀v ∈ B.

The above can also be used to give a linear-algebraic solution to be beautiful problem from
[Mat10] (try it without reading the solution).

Problem 1.2 ([Mat10]) Let x be an irrational number. Use linear algebra to show that a rectangle
with sides 1 and

√
2 cannot be tiled with a finite number of non-overlapping squares.

We can now solve it given our current knowledge of linear algebra. Recall that R is a vector
space over Q and 1 and

√
2 are linearly independent elements of this vector space. Let us

assume that S1, . . . , Sn are squares with side lengths ℓ1, . . . , ℓn, which tile the rectangle R.
Let S = Span

({
1,
√

2, ℓ1, . . . , ℓn

})
.

Since there exists a basis for S containing 1 and
√

2, and since any map from this basis to
R defines a unique linear transformation, there exists a linear transformation φ : S → R

satisfying φ(1) = 1 and φ(
√

2) = −1. Define the (area like) function µ : S × S → R as
µ(a, b) = φ(a) · φ(b). For a rectangle R0 with sides a, b ∈ S, we use µ(R0) to denote µ(a, b).

One can show that if we extend all line segments bounding the squares to the sides of R
then the sides of all new rectangles generated this way, lie in S and hence µ is defined for
all these rectangles. Also, it is easy to check that µ adds like area i.e., if a rectangle R3 is
split in to R1 and R2, then µ(R3) = µ(R1) + µ(R2). This gives

φ(1) · φ(
√

2) = µ(R) =
n

∑
i=1

µ(Si) =
n

∑
i=1

(φ(ℓi))
2 ,

which is a contradiction since the LHS is -1 while the RHS is non-negative.
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2 Kernel and Image of a Linear Transformation

Definition 2.1 Let φ : V → W be a linear transformation. We define its kernel and image as:

- ker(φ) := {v ∈ V | φ(v) = 0W}.

- im(φ) = {φ(v) | v ∈ V}.

Proposition 2.2 ker(φ) is a subspace of V and im(φ) is a subspace of W.

Proposition 2.3 (rank-nullity theorem) If V is a finite dimensional vector space and φ : V →
W is a linear transformation, then

dim(ker(φ)) + dim(im(φ)) = dim(V) .

dim(im(φ)) is called the rank and dim(ker(φ)) is called the nullity of φ.

Example 2.4 Consider the matrix A which defines a linear transformation from F7
2 to F3

2:

A =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .

- dim(im(φ)) = 3.

- dim(ker(φ)) = 4.

- Check that ker(φ) is a code which can recover from one bit of error.

- Check that this is also true for the (2k − 1)× k matrix Ak where the ith column is the number
i written in binary (with the most significant bit at the top).

This code is known as the Hamming Code and the matrix A is called the parity-check matrix of the
code.

3 Eigenvalues and Eigenvectors

Definition 3.1 Let V be a vector space over the field F and let φ : V → V be a linear transforma-
tion. λ ∈ F is said to be an eigenvalue of φ if there exists v ∈ V \ {0V} such that φ(v) = λ · v.
Such a vector v is called an eigenvector corresponding to the eigenvalue λ. The set of eigenvalues
of φ is called its spectrum:

spec(φ) = {λ | λ is an eigenvalue of φ} .
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Example 3.2 Consider the matrix

M =

[
2 0
0 0

]
,

which can be viewed as a linear transformation from R2 to R2. Note that[
2 0
0 0

] [
x1
x2

]
=

[
2x1
0

]
= λ ·

[
x1
x2

]
is only satisfied if λ = 0, x1 = 0 or λ = 2, x2 = 0. Thus spec(M) = {0, 2}.

Example 3.3 It can also be the case that spec(φ) = ∅, as witnessed by the rotation matrix

Mθ =

[
cos θ − sin θ
sin θ cos θ

]
,

when viewed as a linear transformation from R2 to R2.

Example 3.4 Consider the following transformations:

- Differentiation is a linear transformation on the class of (say) infinitely differentiable real-
valued functions over [0, 1] (denoted by C∞([0, 1], R)). Each function of the form c · exp(λx)
is an eigenvector with eigenvalue λ. If we denote the transformation by φ0, then spec(φ0) =
R.

- We can also consider the transformation φ1 : R[x] → R[x] defined by differentiation i.e., for
any polynomial P ∈ R[x], φ1(P) = dP/dx. Note that now the only eigenvalue is 0, and
thus spec(φ) = {0}.

- Consider the transformation φleft : RN → RN. Any geometric progression with common
ratio r is an eigenvector of φleft with eigenvalue r (and these are the only eigenvectors for this
transformation).

Proposition 3.5 Let Uλ = {v ∈ V | φ(v) = λ · v}. Then for each λ ∈ F, Uλ is a subspace of V.

Note that Uλ = {0V} if λ is not an eigenvalue. The dimension of this subspace is called
the geometric multiplicity of the eigenvalue λ.

Proposition 3.6 Let λ1, . . . , λk be distinct eigenvalues of φ with associated eigenvectors v1, . . . , vk.
Then the set {v1, . . . , vk} is linearly independent.

3



Proof: We can prove via induction that for all r ∈ [k], the subset {v1, . . . , vr} is inde-
pendent. The base case follws from the fact that v1 ̸= 0V , and thus {v1} is a linearly
independent set. For the induction step, assume that that the set {v1, . . . , vr} is linearly
independent.

If the set {v1, . . . , vr+1} is linearly dependent, there exist scalars c1, . . . , cr+1 ∈ F such that

c1 · v1 + · · ·+ cr+1 · vr+1 = 0V .

Also, note that we must have at least one of c1, . . . , cr ̸= 0 (since vr+1 ̸= 0). Applying φ on
both sides gives

λ1 · c1 · v1 + · · ·+ λr+1 · cr+1 · vr+1 = 0V .

Multiplying the first equality by λr+1 and substracting the two gives

(λ1 − λr+1) · c1 · v1 + · · · (λr − λr+1)cr · vr = 0V .

Since all the eigenvalues are distinct, and at least one of c1, . . . , cr is non-zero, the above
shows that {v1, . . . , vr} is linearly dependent, which contradicts the inductive hypothesis.
Thus, the set v1, . . . , vr+1 must be linearly independent.
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