

Lecture 3: October 7, 2025

Lecturer: Madhur Tulsiani

1 Specifying a Linear Transformation

While some times linear transformations are specified as matrices, the following gives a more abstract way of characterizing a linear transformation.

Proposition 1.1 *Let V, W be vector spaces over \mathbb{F} and let B be a basis for V . Let $\alpha : B \rightarrow W$ be an arbitrary map. Then there exists a unique linear transformation $\varphi : V \rightarrow W$ satisfying $\varphi(v) = \alpha(v) \ \forall v \in B$.*

The above can also be used to give a linear-algebraic solution to the beautiful problem from [Mat10] (try it without reading the solution).

Problem 1.2 ([Mat10]) *Let x be an irrational number. Use linear algebra to show that a rectangle with sides 1 and $\sqrt{2}$ cannot be tiled with a finite number of non-overlapping squares.*

We can now solve it given our current knowledge of linear algebra. Recall that \mathbb{R} is a vector space over \mathbb{Q} and 1 and $\sqrt{2}$ are linearly independent elements of this vector space. Let us assume that S_1, \dots, S_n are squares with side lengths ℓ_1, \dots, ℓ_n , which tile the rectangle R . Let $S = \text{Span}(\{1, \sqrt{2}, \ell_1, \dots, \ell_n\})$.

Since there exists a basis for S containing 1 and $\sqrt{2}$, and since any map from this basis to \mathbb{R} defines a unique linear transformation, there exists a linear transformation $\varphi : S \rightarrow \mathbb{R}$ satisfying $\varphi(1) = 1$ and $\varphi(\sqrt{2}) = -1$. Define the (area like) function $\mu : S \times S \rightarrow \mathbb{R}$ as $\mu(a, b) = \varphi(a) \cdot \varphi(b)$. For a rectangle R_0 with sides $a, b \in S$, we use $\mu(R_0)$ to denote $\mu(a, b)$.

One can show that if we extend all line segments bounding the squares to the sides of R then the sides of all new rectangles generated this way, lie in S and hence μ is defined for all these rectangles. Also, it is easy to check that μ adds like area i.e., if a rectangle R_3 is split into R_1 and R_2 , then $\mu(R_3) = \mu(R_1) + \mu(R_2)$. This gives

$$\varphi(1) \cdot \varphi(\sqrt{2}) = \mu(R) = \sum_{i=1}^n \mu(S_i) = \sum_{i=1}^n (\varphi(\ell_i))^2,$$

which is a contradiction since the LHS is -1 while the RHS is non-negative.

2 Kernel and Image of a Linear Transformation

Definition 2.1 Let $\varphi : V \rightarrow W$ be a linear transformation. We define its kernel and image as:

- $\ker(\varphi) := \{v \in V \mid \varphi(v) = 0_W\}.$
- $\text{im}(\varphi) = \{\varphi(v) \mid v \in V\}.$

Proposition 2.2 $\ker(\varphi)$ is a subspace of V and $\text{im}(\varphi)$ is a subspace of W .

Proposition 2.3 (rank-nullity theorem) If V is a finite dimensional vector space and $\varphi : V \rightarrow W$ is a linear transformation, then

$$\dim(\ker(\varphi)) + \dim(\text{im}(\varphi)) = \dim(V).$$

$\dim(\text{im}(\varphi))$ is called the rank and $\dim(\ker(\varphi))$ is called the nullity of φ .

Example 2.4 Consider the matrix A which defines a linear transformation from \mathbb{F}_2^7 to \mathbb{F}_2^3 :

$$A = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}.$$

- $\dim(\text{im}(\varphi)) = 3.$
- $\dim(\ker(\varphi)) = 4.$
- Check that $\ker(\varphi)$ is a code which can recover from one bit of error.
- Check that this is also true for the $(2^k - 1) \times k$ matrix A_k where the i^{th} column is the number i written in binary (with the most significant bit at the top).

This code is known as the Hamming Code and the matrix A is called the parity-check matrix of the code.

3 Eigenvalues and Eigenvectors

Definition 3.1 Let V be a vector space over the field \mathbb{F} and let $\varphi : V \rightarrow V$ be a linear transformation. $\lambda \in \mathbb{F}$ is said to be an eigenvalue of φ if there exists $v \in V \setminus \{0_V\}$ such that $\varphi(v) = \lambda \cdot v$. Such a vector v is called an eigenvector corresponding to the eigenvalue λ . The set of eigenvalues of φ is called its spectrum:

$$\text{spec}(\varphi) = \{\lambda \mid \lambda \text{ is an eigenvalue of } \varphi\}.$$

Example 3.2 Consider the matrix

$$M = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix},$$

which can be viewed as a linear transformation from \mathbb{R}^2 to \mathbb{R}^2 . Note that

$$\begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2x_1 \\ 0 \end{bmatrix} = \lambda \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

is only satisfied if $\lambda = 0, x_1 = 0$ or $\lambda = 2, x_2 = 0$. Thus $\text{spec}(M) = \{0, 2\}$.

Example 3.3 It can also be the case that $\text{spec}(\varphi) = \emptyset$, as witnessed by the rotation matrix

$$M_\theta = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix},$$

when viewed as a linear transformation from \mathbb{R}^2 to \mathbb{R}^2 .

Example 3.4 Consider the following transformations:

- Differentiation is a linear transformation on the class of (say) infinitely differentiable real-valued functions over $[0, 1]$ (denoted by $C^\infty([0, 1], \mathbb{R})$). Each function of the form $c \cdot \exp(\lambda x)$ is an eigenvector with eigenvalue λ . If we denote the transformation by φ_0 , then $\text{spec}(\varphi_0) = \mathbb{R}$.
- We can also consider the transformation $\varphi_1 : \mathbb{R}[x] \rightarrow \mathbb{R}[x]$ defined by differentiation i.e., for any polynomial $P \in \mathbb{R}[x]$, $\varphi_1(P) = dP/dx$. Note that now the only eigenvalue is 0, and thus $\text{spec}(\varphi) = \{0\}$.
- Consider the transformation $\varphi_{\text{left}} : \mathbb{R}^{\mathbb{N}} \rightarrow \mathbb{R}^{\mathbb{N}}$. Any geometric progression with common ratio r is an eigenvector of φ_{left} with eigenvalue r (and these are the only eigenvectors for this transformation).

Proposition 3.5 Let $U_\lambda = \{v \in V \mid \varphi(v) = \lambda \cdot v\}$. Then for each $\lambda \in \mathbb{F}$, U_λ is a subspace of V .

Note that $U_\lambda = \{0_V\}$ if λ is not an eigenvalue. The dimension of this subspace is called the geometric multiplicity of the eigenvalue λ .

Proposition 3.6 Let $\lambda_1, \dots, \lambda_k$ be distinct eigenvalues of φ with associated eigenvectors v_1, \dots, v_k . Then the set $\{v_1, \dots, v_k\}$ is linearly independent.

Proof: We can prove via induction that for all $r \in [k]$, the subset $\{v_1, \dots, v_r\}$ is independent. The base case follows from the fact that $v_1 \neq 0_V$, and thus $\{v_1\}$ is a linearly independent set. For the induction step, assume that the set $\{v_1, \dots, v_r\}$ is linearly independent.

If the set $\{v_1, \dots, v_{r+1}\}$ is linearly *dependent*, there exist scalars $c_1, \dots, c_{r+1} \in \mathbb{F}$ such that

$$c_1 \cdot v_1 + \dots + c_{r+1} \cdot v_{r+1} = 0_V.$$

Also, note that we must have at least one of $c_1, \dots, c_r \neq 0$ (since $v_{r+1} \neq 0$). Applying φ on both sides gives

$$\lambda_1 \cdot c_1 \cdot v_1 + \dots + \lambda_{r+1} \cdot c_{r+1} \cdot v_{r+1} = 0_V.$$

Multiplying the first equality by λ_{r+1} and subtracting the two gives

$$(\lambda_1 - \lambda_{r+1}) \cdot c_1 \cdot v_1 + \dots + (\lambda_r - \lambda_{r+1}) c_r \cdot v_r = 0_V.$$

Since all the eigenvalues are distinct, and at least one of c_1, \dots, c_r is non-zero, the above shows that $\{v_1, \dots, v_r\}$ is linearly dependent, which contradicts the inductive hypothesis. Thus, the set v_1, \dots, v_{r+1} must be linearly independent. \blacksquare

References

[Mat10] Jiří Matoušek, *Thirty-three miniatures: Mathematical and algorithmic applications of linear algebra*, vol. 53, American Mathematical Soc., 2010. 1