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1 Gaussian Random Variables

A Gaussian random variable X is defined through the density function

γ(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 ,

where µ is its mean and σ2 is its variance, and we write X ∼ N (µ, σ2). To see the definition
gives a valid probability distribution, we need to show

∫ ∞
−∞ γ(x)dx = 1. It suffices to show

for the case that µ = 0 and σ2 = 1. First we show the integral is bounded.

Claim 1.1 I =
∫ ∞
−∞ e−x2/2dx is bounded.

Proof: We see that

I =
∫ ∞

−∞
e−x2/2dx = 2

∫ ∞

0
e−x2/2dx ≤ 2

∫ 2

0
1dx + 2

∫ ∞

2
e−xdx = 4 + 2e−2 ,

where we use the fact that I is even and after x = 2, e−x2/2 is upper bounded by e−x.

Next we show that the normalization factor is
√

2π.

Claim 1.2 I2 = 2π.

Proof:

I2 =
∫ ∞

−∞
e−x2/2dx

∫ ∞

−∞
e−y2/2dy =

∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2)/2dxdy

=
∫ ∞

0

∫ 2π

0
e−r2/2rdrdθ (let x = r cos θ and y = r sin θ)

= 2π
∫ ∞

0
e−sds (let s = r2/2)

= 2π .
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This completes the proof that the definition gives a valid probability distribution. Be-
fore proceeding to applications of Gaussian random variables, we prove the following fact
which we will use repeatedly.

Proposition 1.3 Let Z = c1X1 + c2X2, where X1 ∼ N (0, 1) and X2 ∼ N (0, 1) are independent.
Then Z ∼ N (0, c2

1 + c2
2).

Proof: By a simple change of variable, we can check that the density function for c1X1 is

1√
2π|c1|

e
− x2

2c2
1 , which shows that c1X1 ∼ N (0, c2

1), and similarly c2X2 ∼ N (0, c2
2).

Next, we can check that if X and Y are independent random variables with densities f and
g, then for Z = X + Y, we have

P [Z ≤ t] =
∫ t

∞

(∫ ∞

−∞
f (x) · g(z − x)dx

)
dz ,

which gives the density of Z as h(z) =
∫ ∞
−∞ f (x) · g(z − x)dx. Taking X = c1X and Y =

c2X2, we get the density of Z = c1X1 + c2X2 is

h(z) =
∫ ∞

−∞

1√
2π |c1|

· e
− x2

2c2
1 · 1√

2π |c2|
· e

− (z−x)2

2c2
2 dx .

We leave it as an exercise to show that the above integral gives

h(z) =
1√

2π(c2
1 + c2

2)
· e

− z2

2(c2
1+c2

2) ,

which implies c1X1 + c2X2 ∼ N (0, c2
1 + c2

2).

One can obtain the following corollary using an inductive application of the above propo-
sition.

Corollary 1.4 Let X1, . . . , Xn ∼ N (0, 1) be independent standard Gaussian random variables.
Then, for any vector of coefficients c = (c1, . . . , cn), we have

Z = c1X1 + · · ·+ cnXn ∼ N (0, ∥c∥2) ,

where ∥c∥2 = c2
1 + · · ·+ c2

n.

Remark 1.5 Note that we need independence for general statements of the form “linear combi-
nation of Gaussians is a Gaussian”, and that the statement can fail when the Gaussians are not
independent. For example, consider the random variables

X1 ∼ N (0, 1) and X2 =

{
X1 if |X1| ≤ 1

−X1 if |X1| > 1
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One can check that if we look at the variables X1 and X2, they are Gaussian random variables with
mean 0 and variance 1. However, we have that

X1 + X2 =

{
2X1 if |X1| ≤ 1
0 otherwise

.

Thus, the linear combination is zero with positive probability, and is not a Gaussian distribution.

When a collection of Gaussian random variables X1, . . . , Xn satisfies that their linear combina-
tions are also Gaussian, they are called “jointly Gaussian random variables. Thus, we proved that
inpdendent Gaussian random variables are also jointly Gaussian.

We prove a useful lemma for later use.

Lemma 1.6 For X ∼ N (0, 1) and λ ∈ (0, 1/2),

E
[
eλ·X2

]
=

1√
1 − 2λ

.

Proof:

E
[
eλ·X2

]
=
∫ ∞

−∞
eλ·x2 1√

2π
e−x2/2dx =

∫ ∞

−∞

1√
2π

e−(1−2λ)x2/2dx

=
∫ ∞

−∞

1√
2π

e−y2/2 dy√
1 − 2λ

(let y =
√

1 − 2λx)

=
1√

1 − 2λ

Recall that a Gaussian random variable X is defined through the density function

γ(x) =
1√

2πσ2
· e−

(x−µ)2

2σ2 ,

where µ is its mean and σ2 is its variance, and we write X ∼ N (µ, σ2).

2 Johnson–Lindenstrauss Lemma

We will use concentration bounds on Gaussian random variables to prove the following
important lemma.
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Lemma 2.1 (Johnson–Lindenstrauss [JL84]) Let P be a set of n points in Rd. Let 0 < ε < 1.
For k = 8 ln n

ε2/2−ε3/3 , there exists a mapping φ : P → Rk such that for all u, v ∈ P

(1 − ε)∥u − v∥2 ≤ ∥φ(u)− φ(v)∥2 ≤ (1 + ε)∥u − v∥2 .

The above lemma is useful for dimensionality reduction, especially when a problem has
an exponential dependence on the number of dimensions.

We construct the mapping φ as follows. First choose a matrix G ∈ Rk×d such that each
Gij ∼ N (0, 1) is independent. Define

φ(u) =
Gu√

k
.

Note that by the above construction φ is oblivious, meaning that it doesn’t depend on the
points in P , and it is linear.

The strategy of proving the lemma is to first prove that with high probability the lemma
holds for any fixed two points and then apply union bounds to get the result for all pairs
of points.

Claim 2.2 Fix u, v ∈ P . Let w = u − v. With probability greater than 1 − 1/n3, the following
inequality holds,

(1 − ε) · ∥w∥2 ≤ ∥φ(w)∥2 ≤ (1 + ε) · ∥w∥2 .

Proof: Recall that φ(u) = Gu√
k
. Let

Z =
k∥φ(w)∥2

∥w∥2 =
∑k

i=1(Gw)2
i

∥w∥2 .

We need to show (1 − ε)k ≤ Z ≤ (1 + ε)k. We know that the sum of Gaussian random
variables is still a Gaussian random variable, so (Gw)i = Giw = ∑n

j=1 Gijwj is a Gaussian

variable. Besides, Var
[
∑n

j=1 Gijwj

]
= ∑j w2

j = ∥w∥2 according to Fact ??. In other words,

Giw ∼ N (0, ∥w∥2). As a result, Z = ∑k
i=1

(Gw)2
i

∥w∥2 = ∑k
i=1 X2

i , where Xi ∼ N (0, 1). The
expectation of each individual element in Gw is

E
[
(Gw)2

i
]
= E

[
(Giw)2] = E

( n

∑
j=1

Gijwj

)2
 = Var

[
n

∑
j=1

Gijwj

]
= ∥w∥2 .

In addition,

E [Z] =
∑k

j=1 E
[
(Gw)2

i
]

∥w∥2 = k .
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Now we prove the concentration bound for Z. The proof is almost identical to Chernoff
bound.

P [Z ≥ (1 + ε)k] ≤ P
[
etZ ≥ eλ·(1+ε)k

]
≤

E
[
eλ·Z]

eλ·(1+ε)k
(by Markov’s inequality)

=
E
[
eλ·∑k

i=1 X2
i

]
eλ·(1+ε)k

=
∏k

i=1 E
[
eλ·X2

i

]
eλ·(1+ε)k

(by the independence of X1, . . . , Xk)

=
∏k

i=1
1√

1−2λ

eλ·(1+ε)k
(by Lemma 1.6)

≤
(

e−2(1+ε)λ

1 − 2λ

)k/2

(assume λ < 1/2)

≤ (e−ε(1 + ε))k/2 (let λ =
ε

2(1 + ε)
)

≤
(
(1 − ε +

ε2

2
)(1 + ε)

)k/2

(by Taylor expansion of e−x)

≤ e−
(

ε2
2 − ε3

2

)
k
2 (by 1 + x ≤ ex)

We can derive the other side of the inequality in an analogous way. Thus, we have

P [|Z − k| ≥ εk] ≤ 2 · exp
(
−
(

ε2

2
− ε3

2

)
k
2

)
≤ 2 · exp (−3 ln n) =

2
n3 ,

where we choose

k =

⌈
6 ln n
ε2

2 − ε3

2

⌉
.

To prove Johnson–Lindenstrauss Lemma, we apply the union bound and get the desired
result

P
[
∀u, v ∈ P , (1 − ε)∥u − v∥2 ≤ ∥φ(u)− φ(v)∥2 ≤ (1 + ε)∥u − v∥2] ≥ 1 −

(
n
2

)
2
n3

≥ 1 − 1
n

.
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