

Lecture 16: November 20, 2025

Lecturer: Madhur Tulsiani

1 Gaussian Random Variables

A Gaussian random variable X is defined through the density function

$$\gamma(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}},$$

where μ is its mean and σ^2 is its variance, and we write $X \sim \mathcal{N}(\mu, \sigma^2)$. To see the definition gives a valid probability distribution, we need to show $\int_{-\infty}^{\infty} \gamma(x) dx = 1$. It suffices to show for the case that $\mu = 0$ and $\sigma^2 = 1$. First we show the integral is bounded.

Claim 1.1 $I = \int_{-\infty}^{\infty} e^{-x^2/2} dx$ is bounded.

Proof: We see that

$$I = \int_{-\infty}^{\infty} e^{-x^2/2} dx = 2 \int_0^{\infty} e^{-x^2/2} dx \leq 2 \int_0^2 1 dx + 2 \int_2^{\infty} e^{-x} dx = 4 + 2e^{-2},$$

where we use the fact that I is even and after $x = 2$, $e^{-x^2/2}$ is upper bounded by e^{-x} . ■

Next we show that the normalization factor is $\sqrt{2\pi}$.

Claim 1.2 $I^2 = 2\pi$.

Proof:

$$\begin{aligned} I^2 &= \int_{-\infty}^{\infty} e^{-x^2/2} dx \int_{-\infty}^{\infty} e^{-y^2/2} dy = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+y^2)/2} dx dy \\ &= \int_0^{\infty} \int_0^{2\pi} e^{-r^2/2} r dr d\theta \quad (\text{let } x = r \cos \theta \text{ and } y = r \sin \theta) \\ &= 2\pi \int_0^{\infty} e^{-s} ds \quad (\text{let } s = r^2/2) \\ &= 2\pi. \end{aligned}$$
■

This completes the proof that the definition gives a valid probability distribution. Before proceeding to applications of Gaussian random variables, we prove the following fact which we will use repeatedly.

Proposition 1.3 *Let $Z = c_1 X_1 + c_2 X_2$, where $X_1 \sim \mathcal{N}(0, 1)$ and $X_2 \sim \mathcal{N}(0, 1)$ are independent. Then $Z \sim \mathcal{N}(0, c_1^2 + c_2^2)$.*

Proof: By a simple change of variable, we can check that the density function for $c_1 X_1$ is $\frac{1}{\sqrt{2\pi|c_1|}} e^{-\frac{x^2}{2c_1^2}}$, which shows that $c_1 X_1 \sim \mathcal{N}(0, c_1^2)$, and similarly $c_2 X_2 \sim \mathcal{N}(0, c_2^2)$.

Next, we can check that if X and Y are independent random variables with densities f and g , then for $Z = X + Y$, we have

$$\mathbb{P}[Z \leq t] = \int_{-\infty}^t \left(\int_{-\infty}^{\infty} f(x) \cdot g(z-x) dx \right) dz,$$

which gives the density of Z as $h(z) = \int_{-\infty}^{\infty} f(x) \cdot g(z-x) dx$. Taking $X = c_1 X_1$ and $Y = c_2 X_2$, we get the density of $Z = c_1 X_1 + c_2 X_2$ is

$$h(z) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi|c_1|}} \cdot e^{-\frac{x^2}{2c_1^2}} \cdot \frac{1}{\sqrt{2\pi|c_2|}} \cdot e^{-\frac{(z-x)^2}{2c_2^2}} dx.$$

We leave it as an exercise to show that the above integral gives

$$h(z) = \frac{1}{\sqrt{2\pi(c_1^2 + c_2^2)}} \cdot e^{-\frac{z^2}{2(c_1^2 + c_2^2)}},$$

which implies $c_1 X_1 + c_2 X_2 \sim \mathcal{N}(0, c_1^2 + c_2^2)$. ■

One can obtain the following corollary using an inductive application of the above proposition.

Corollary 1.4 *Let $X_1, \dots, X_n \sim \mathcal{N}(0, 1)$ be independent standard Gaussian random variables. Then, for any vector of coefficients $c = (c_1, \dots, c_n)$, we have*

$$Z = c_1 X_1 + \dots + c_n X_n \sim \mathcal{N}(0, \|c\|^2),$$

where $\|c\|^2 = c_1^2 + \dots + c_n^2$.

Remark 1.5 *Note that we need independence for general statements of the form “linear combination of Gaussians is a Gaussian”, and that the statement can fail when the Gaussians are not independent. For example, consider the random variables*

$$X_1 \sim \mathcal{N}(0, 1) \quad \text{and} \quad X_2 = \begin{cases} X_1 & \text{if } |X_1| \leq 1 \\ -X_1 & \text{if } |X_1| > 1 \end{cases}$$

One can check that if we look at the variables X_1 and X_2 , they are Gaussian random variables with mean 0 and variance 1. However, we have that

$$X_1 + X_2 = \begin{cases} 2X_1 & \text{if } |X_1| \leq 1 \\ 0 & \text{otherwise} \end{cases}.$$

Thus, the linear combination is zero with positive probability, and is not a Gaussian distribution.

When a collection of Gaussian random variables X_1, \dots, X_n satisfies that their linear combinations are also Gaussian, they are called "jointly Gaussian random variables. Thus, we proved that independent Gaussian random variables are also jointly Gaussian.

We prove a useful lemma for later use.

Lemma 1.6 For $X \sim \mathcal{N}(0, 1)$ and $\lambda \in (0, 1/2)$,

$$\mathbb{E} [e^{\lambda \cdot X^2}] = \frac{1}{\sqrt{1-2\lambda}}.$$

Proof:

$$\begin{aligned} \mathbb{E} [e^{\lambda \cdot X^2}] &= \int_{-\infty}^{\infty} e^{\lambda \cdot x^2} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-(1-2\lambda)x^2/2} dx \\ &= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-y^2/2} \frac{dy}{\sqrt{1-2\lambda}} \quad (\text{let } y = \sqrt{1-2\lambda}x) \\ &= \frac{1}{\sqrt{1-2\lambda}} \end{aligned}$$

■

Recall that a Gaussian random variable X is defined through the density function

$$\gamma(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}},$$

where μ is its mean and σ^2 is its variance, and we write $X \sim \mathcal{N}(\mu, \sigma^2)$.

2 Johnson–Lindenstrauss Lemma

We will use concentration bounds on Gaussian random variables to prove the following important lemma.

Lemma 2.1 (Johnson–Lindenstrauss [JL84]) *Let \mathcal{P} be a set of n points in \mathbb{R}^d . Let $0 < \varepsilon < 1$. For $k = \frac{8 \ln n}{\varepsilon^2/2 - \varepsilon^3/3}$, there exists a mapping $\varphi : \mathcal{P} \rightarrow \mathbb{R}^k$ such that for all $u, v \in \mathcal{P}$*

$$(1 - \varepsilon) \|u - v\|^2 \leq \|\varphi(u) - \varphi(v)\|^2 \leq (1 + \varepsilon) \|u - v\|^2.$$

The above lemma is useful for dimensionality reduction, especially when a problem has an exponential dependence on the number of dimensions.

We construct the mapping φ as follows. First choose a matrix $G \in \mathbb{R}^{k \times d}$ such that each $G_{ij} \sim \mathcal{N}(0, 1)$ is independent. Define

$$\varphi(u) = \frac{Gu}{\sqrt{k}}.$$

Note that by the above construction φ is oblivious, meaning that it doesn't depend on the points in \mathcal{P} , and it is linear.

The strategy of proving the lemma is to first prove that with high probability the lemma holds for any fixed two points and then apply union bounds to get the result for all pairs of points.

Claim 2.2 *Fix $u, v \in \mathcal{P}$. Let $w = u - v$. With probability greater than $1 - 1/n^3$, the following inequality holds,*

$$(1 - \varepsilon) \cdot \|w\|^2 \leq \|\varphi(w)\|^2 \leq (1 + \varepsilon) \cdot \|w\|^2.$$

Proof: Recall that $\varphi(u) = \frac{Gu}{\sqrt{k}}$. Let

$$Z = \frac{k \|\varphi(w)\|^2}{\|w\|^2} = \frac{\sum_{i=1}^k (Gw)_i^2}{\|w\|^2}.$$

We need to show $(1 - \varepsilon)k \leq Z \leq (1 + \varepsilon)k$. We know that the sum of Gaussian random variables is still a Gaussian random variable, so $(Gw)_i = G_i w = \sum_{j=1}^n G_{ij} w_j$ is a Gaussian variable. Besides, $\text{Var} \left[\sum_{j=1}^n G_{ij} w_j \right] = \sum_j w_j^2 = \|w\|^2$ according to Fact ???. In other words, $G_i w \sim \mathcal{N}(0, \|w\|^2)$. As a result, $Z = \sum_{i=1}^k \frac{(Gw)_i^2}{\|w\|^2} = \sum_{i=1}^k X_i^2$, where $X_i \sim \mathcal{N}(0, 1)$. The expectation of each individual element in Gw is

$$\mathbb{E} [(Gw)_i^2] = \mathbb{E} [(G_i w)^2] = \mathbb{E} \left[\left(\sum_{j=1}^n G_{ij} w_j \right)^2 \right] = \text{Var} \left[\sum_{j=1}^n G_{ij} w_j \right] = \|w\|^2.$$

In addition,

$$\mathbb{E} [Z] = \frac{\sum_{i=1}^k \mathbb{E} [(Gw)_i^2]}{\|w\|^2} = k.$$

Now we prove the concentration bound for Z . The proof is almost identical to Chernoff bound.

$$\begin{aligned}
\mathbb{P}[Z \geq (1 + \varepsilon)k] &\leq \mathbb{P}\left[e^{tZ} \geq e^{\lambda \cdot (1 + \varepsilon)k}\right] \\
&\leq \frac{\mathbb{E}[e^{\lambda \cdot Z}]}{e^{\lambda \cdot (1 + \varepsilon)k}} && \text{(by Markov's inequality)} \\
&= \frac{\mathbb{E}\left[e^{\lambda \cdot \sum_{i=1}^k X_i^2}\right]}{e^{\lambda \cdot (1 + \varepsilon)k}} = \frac{\prod_{i=1}^k \mathbb{E}[e^{\lambda \cdot X_i^2}]}{e^{\lambda \cdot (1 + \varepsilon)k}} && \text{(by the independence of } X_1, \dots, X_k\text{)} \\
&= \frac{\prod_{i=1}^k \frac{1}{\sqrt{1-2\lambda}}}{e^{\lambda \cdot (1 + \varepsilon)k}} && \text{(by Lemma 1.6)} \\
&\leq \left(\frac{e^{-2(1+\varepsilon)\lambda}}{1-2\lambda}\right)^{k/2} && \text{(assume } \lambda < 1/2\text{)} \\
&\leq (e^{-\varepsilon}(1 + \varepsilon))^{k/2} && \text{(let } \lambda = \frac{\varepsilon}{2(1 + \varepsilon)}\text{)} \\
&\leq \left((1 - \varepsilon + \frac{\varepsilon^2}{2})(1 + \varepsilon)\right)^{k/2} && \text{(by Taylor expansion of } e^{-x}\text{)} \\
&\leq e^{-\left(\frac{\varepsilon^2}{2} - \frac{\varepsilon^3}{2}\right)\frac{k}{2}} && \text{(by } 1 + x \leq e^x\text{)}
\end{aligned}$$

We can derive the other side of the inequality in an analogous way. Thus, we have

$$\mathbb{P}[|Z - k| \geq \varepsilon k] \leq 2 \cdot \exp\left(-\left(\frac{\varepsilon^2}{2} - \frac{\varepsilon^3}{2}\right)\frac{k}{2}\right) \leq 2 \cdot \exp(-3 \ln n) = \frac{2}{n^3},$$

where we choose

$$k = \left\lceil \frac{6 \ln n}{\frac{\varepsilon^2}{2} - \frac{\varepsilon^3}{2}} \right\rceil.$$

■

To prove Johnson–Lindenstrauss Lemma, we apply the union bound and get the desired result

$$\begin{aligned}
\mathbb{P}\left[\forall u, v \in \mathcal{P}, (1 - \varepsilon)\|u - v\|^2 \leq \|\varphi(u) - \varphi(v)\|^2 \leq (1 + \varepsilon)\|u - v\|^2\right] &\geq 1 - \binom{n}{2} \frac{2}{n^3} \\
&\geq 1 - \frac{1}{n}.
\end{aligned}$$

References

[JL84] W Johnson and J Lindenstrauss, *Extensions of Lipschitz maps into a Hilbert space*, Contemporary Math **26** (1984). 4