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1 Chernoff/Hoeffding Bounds

Let’s recall the bounds we proved in the previous lecture for sums of independent Bernoulli
random variables.

Theorem 1.1 Let Xy, ..., X, be n independent Bernoulli random variables, where X; takes value
1 with probability p;. Let Z = Y} | X; and let y = E [Z] = Y. pi. Then, we have for any 6 > 0,
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P[Z < (1-d)u < <(1_e§)1_5) .

Moreover, when & € (0,1) both the above expressions can be bounded by e /3,

We'll discuss below a few examples of cases where the exponentially small probability
bounds are indeed required. We will need the following union bound

Exercise 1.2 Let Ey, ..., Ey be events on the same outcome space (). Then

P[E,U---UE] <

k
PE] .

1.1 Balanced Allocations

We consider the following problem of allocating jobs to servers: We are given a set of n
servers 1,...,n and m jobs arrive one by one. We seek to assign each job to one of the
servers so that the loads placed on all servers are as balanced as possible.

In developing simple, effective load balancing algorithms, randomization often proves to
be a useful tool. We consider two approaches for this problem:



¢ Random Choice: one possible way to distribute the jobs is to simply place each job
on a random server, chosen independently of the previous allocations.

¢ Two Random Choices: For each job, we choose two servers independently and uni-
formly at random and place the job on the server with less load (breaking ties arbi-
trarily).

We will show that using two random choices significantly reduces the maximum load on
any server. For the entire analysis, we will work with the case when m = n. The analysis
easily extends to an arbitrary m, but it easier to appreciate the bounds when m = O(n)
(and in particular when m = n).

It is convenient to think of the above in terms of the so called “balls and bins” model. Each
job can be thought of a s ball and each server is a bin. We think of assigning job j to a server
i as throwing the j* ball in bin i. The load of a server is the same as the number of balls in
the corresponding bin.

1.1.1 Random choice
Suppose Z; = number of balls in bin i. We can write

1 if ball j is thrown in bin i
Zi = E Xijp where  Xjj = { 0 otherwise
J
Then, we have that each Z; is a sum of m(= n) independent random variables with E [Z;] =
1. Let t = 2o~ By Chernoff/Hoeffding bounds, we have that for each i,

Inlnn-*
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P[Z > < (E) .
To bound the maximum load in across all bins, we use a union bound to say that

PEich.z>t < Y P[Zi>1] < n-(f)t,

t

n
i=1

which is at most % for the above value of K. Hence, with probability at least 1 — %, the

maximum number of balls in a bin is at most lfllfr‘l’:l.

1.1.2 The power of two random choices

It is a somehwat surprising result (which can still be proved using Chernoff bounds) that
two random choices can reduce the maximum load to O(Inlnn). The proof technique is



due to Azar et al. [ABKU94, ABKU99] and various applications were explored by Mitzen-
macher in his thesis [Mit96]. We will not discuss the proof of this result, but you are en-
couraged to look up the analysis from the notes in 2016 (or from the book by Mitzenmacher
and Upfal).

1.2 Random Max 3-SAT

A few lectures ago, we considered the problem of Max 3-SAT, where given a collection
of m clauses in n variables, the goal is choose values for the variables, satisfying as many
clauses as possible. An instance ¢ of the problem is given by

¢ = (Ci,...,Cn),

where each C; is a clause of the form C; = (I;, VI;, V I;,;) and each Zi]. isin turn Xj; or its nega-
tion X;;. We assume that each clause contains three distinct variables. We prove that for any
instance a random assignment to the variables satisfies 7m /8 of the clauses in expectation,
and thus there always esists an assignment satisfying at least 7m/8 of the clauses. In fact,
we also saw how such an assignment can be found efficiently and deterministically.

Now we revisit the problem, chosing the instance ¢ at random. We will show that with
high probability of the choice of the instance, even the best assignment to the variables
can satisfy at most (7/8 + €)m clauses, and thus the trivial algorithm from earlier finds
essentially the best possible assignment.

To define what we mean by a random instance, consider fixing in advance the ”structure”
of the instance i.e., we fix sets Sy, ..., S, of size 3 each, such that the clause C; will involve
variables in the set S;. However, when picking the clause C;, we will decide independently
at random for each of the three variables, wether the literal ll-], equals the variable Xj; or its
negation ¥;,. This choice is made independently at random for each of the clauses, and
each of the 3 variables in the clause. We can now prove the following.

Proposition 1.3 Let ¢ be a random instance as above, with m > 10/ €2 clauses. Then

. . o 7
P | Optimal assignment satisfies more than (8 + 8) -m clauses} < e "
¢

Proof: Fix an assignment « € {0,1}" for the variables, and consider the random vari-
able Z, corresponding to the number of clauses satisfied by the assignment a« (which is a
function of the the choice of the instance ¢). We can write

th = Yl,uc+"'+Ym,a/

where Y;, = 1 if the i-th clause C; is satisfied by the assignment a and 0 othersise. Since
the choices of literals in different clauses are independent, the variables Y7 4, ..., Yy, are
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independent Bernoulli random variables. Moreover, E [Y;,] = 7/8 since for each clause
there is exactly one literal pattern which falsifies C;. Thus, by Chernoff-Hoeffding bounds

7 8e\ 7 8e\2 7m 1
> (L . - > i R < (=) =z
H;[Z"‘—<8”) m] “J[Z“—<l+7> 8 m] . exP( <7> 8 3)
8e? 2
= — (=) < e,

Taking a union bound over all asignments, we have that
n 7 n, ,—2n —n
P |3a € {0,1}". Z, > §+s m| <2".e < e ",
¢

which completes the proof. |

1.3 Interlude: Dealing with £1 random variables

A common variant of the above calculations also arises for the case of random variables
which take values in the set { —1,1} instead of the set {0,1}. Let Y3, ..., Y, be independent
random variables, which take values in the set {—1,1} with probability 1/2 each (such
random variables are called Rademacher random variables), and let Z = Y ;Y;. We
can easily apply the results for Bernoulli random variables to this case by defining X; =
(1+Y;)/2. Note that the variables Xj, ..., X, are now independent Bernoulli random
variables (with parameter 1/2). Considering Z' = Y_I' ; X;, we can write

n t n 5
Z/—2‘2n2:| SZeXp(—t/6n)

1.4 Finding low-discrepancy assignments

We consider the problem of assigning Xj, ... X, € {—1,1} such that the signs in each of
the m sets Sy,...,S,, C [n] are “balanced”. We defined the imbalance, also known as the
discrepancy, in the set S; as

Zs, = Y X;.

JES;



While the variables Zs,, ..., Zs, are not necessarily indepdent, each of these is a sum of
few X; variables, which are indepdent. Thus, we can say that for any S;,

P[1Zs| > f] < 2-exp(~£2/(6]S])) < 2-exp (—£/(6n)) ,
using the bound we proved earlier. By a union bound over all i € [m], we get that
P[3i€ [m]. |Zs| > t] < 2m-exp (—+/(6n)) .

Thus, when t = v/12n - Inm, the probability of the above event is at most 2/m. Check that
just using Chebyshev’s inequality does not allow for such a strong bound on the probabil-
ity of the above event.

2 Hoeffding bounds

Previously, we used bounds for Bernoulli variables to also bound the deviations for a sum
of independent Rademacher random variables. Hoeffding’s inequality actially also gives
a bound for weighted sums of independent Rademacher variables.

Lemma 2.1 Let X3, ..., X, be independent Rademacher random variables, and let a € R". Then,
P[|Ya:X:| >t] < 2-exp(—£2/2]alf).
Proof: As before, we use Markov’s inequality to say that for any A > 0,

E [exp(A ;4 Xi)]
exp(/\;aixi) > exp(/\t)] < exp(A1) .

P[) aX;>t] =P

Using independence, we have that E [exp(A - ¥;4,X;)] = [T, E [¢*%%/]. We now calculate
the individual expectations as

E |:e/\.a,in:| — % (eA-ai _'_ef/\ﬂi) S e)\z.a?/zl

where we used the ineuality (e¥ +¢7%)/2 < ¢**/2 which can be proved (for example) using
Taylor expansions. Plugging the bounds back in, we get

A2.42/2
e i
Py X >t < HT — exp(A2- [al? /2= A-1).

Optimizing over A gives the choice A = ||a||* /t, which gives the bound
Py aXi>t] < exp(—A-|a|*/2).

By switching from a to —a, we also get the same bound for P [}_a;X; < —t]. [ ]
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The same proof can also be used to analyze sums of independent random variables Xj, ..., X,
where X; takes values in the interval [a;, b;]. For any such variable X;, one can prove the
inequality

Efexp(A(X; — E[X]))] < exp(A2- (b; — )*/8).

Exercise 2.2 Use the above inequality to prove that for independent random variables Xy, ..., X,
with X; € [a;, b;], we have that

Py X—E|Y X
i

i

2t2
; t] = rer (‘E(bi—ai)Z) |
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