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1 Threshold Phenomena in Random Graphs

We consider a model of Random Graphs by Erdős and Rényi [ER60]. To generate a random
graph with n vertices, for every pair of vertices {i, j}, we put an edge independently with
probability p. This model is denoted by Gn,p.

Let G be a random Gn,p graph and let H be any fixed graph (on some constant number of
vertices independent of n). We will be interested in understanding the probability that G
contains a copy of H. We start by computing this when H is K4, the clique on 4 vertices.

Definition 1.1 We define k-clique to be a fully connected graph with k vertices.
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Figure 1: 4-Clique

As a convention, we will count a permutation of a copy of K4 as the same copy. We define
the random variable

Z = number of copies of K4 in G = ∑
C

XC ,

where C ranges over all subsets of V of size 4 and the random variable XC is defined as

XC =

{
1 if all pair of vertices in the set C have an edge in between them
0 otherwise

.
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We have E [XC] = p6, since the probability of connecting all 4 vertices (using 6 edges) in
the 4-tuple is p6. So we have the expectation of Z :

E [Z] = ∑
C

E [XC] =

(
n
4

)
· p6

We observe that

E [Z] → 0 when p ≪ n−2/3 and E [Z] → ∞ when p ≫ n−2/3 .

Here, by p ≪ n−2/3, we mean that limn→∞(p/n−2/3) = 0 and p ≫ n−2/3 is defined
similarly. We will prove that there is in fact a threshold phenomenon in the probability
that G contains a copy of K4. When p ≪ n−2/3, the probability that a random graph G
generated according to model Gn,p contains a copy of K4, goes to 0 as n → ∞. On the other
hand, when p ≫ n−2/3, this probability tends to 1.

Theorem 1.2 Let G be generated randomly according to the model Gn,p graph. We have that:

- If p ≪ n−2/3, then P [G contains a copy of K4] → 0 as n → ∞.

- If p ≫ n−2/3, then P [G contains a copy of K4] → 1 as n → ∞.

Proof: As above, we define the random variable Z,

Z = number of copies of K4 in G = ∑
C

XC .

The case when p ≪ n−2/3 can be easily handled by Markov’s inequality. We get that,

P [Z > 0] = P [Z ≥ 1] ≤ E [Z]
1

.

Since E [Z] → 0 as n → ∞ when p ≪ n−2/3, we get that P [G contains a copy of K4] → 0.

When p ≫ n−2/3, we want to show that P [Z > 0] → 1, i.e., P [Z = 0] → 0. We use
Chebyshev’s inequality to prove this. We first compute the variance of Z.

Var [Z] = Var

[
∑
C

XC

]
= ∑

C
Var [XC] + ∑

C ̸=D
Cov [XC, XD]

Since E [XC] = p6, we have Var [XC] = p6 − p12. Also, for two distinct sets C and D, we
consider four different cases depending on the number of vertices they share.

- Case 1: |C ∩ D| = 0. Since no vertex is shared, XC and XD are independent and
hence Cov [XC, XD] = 0.
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- Case 2: |C ∩ D| = 1. Since the variables XC and XD depend on pairs of vertices in the
sets C and D, and the two sets do not share any pair, we still have Cov [XC, XD] = 0.

- Case 3: |C ∩ D| = 2. Since C and D share a pair of vertices, there are 11 pairs which
must all have edges between them in G, for both XC and XD to be 1. Thus, we have
E [XCXD] = p11 and

Cov [XC, XD] = E [XCXD]− E [XC] · E [XD] = p11 − p12 .

- Case 4: |C ∩ D| = 3. in this case C and D share 3 pairs and thus there are 9 distinct
pairs of vertices which must all have edges between them for both XC and XD to be
1. Thus,

Cov [XC, XD] = E [XCXD]− E [XC] · E [XD] = p9 − p12 .

Also, there are (n
6) · (

6
4) pairs C and D such that |C ∩ D| = 2, and (n

5) · (
5
4) pairs such that

|C ∩ D| = 3. Combining the above cases we have,

Var [Z] = ∑
C
Var [XC] + ∑

C ̸=D
Cov [XC, XD]

=

(
n
4

)
· p6(1 − p6) +

(
n
6

)
·
(

6
4

)
· (p11 − p12) +

(
n
5

)
·
(

5
4

)
· (p9 − p12)

= O(n4 p6) + O(n6 p11) + O(n5 p9) .

Applying Chebyshev’s inequality gives

P [Z = 0] ≤ P [|Z − E [Z]| ≥ E [Z]] ≤ Var [Z]
(E [Z])2

=
1

(n
4)

2 · p12
·
(

O(n4 p6) + O(n6 p11) + O(n5 p9)
)

= O
(

1
n4 p6

)
+ O

(
1

n2 p

)
+ O

(
1

n3 p3

)
.

For p ≫ n−2/3, all the terms on the right tend to 0 as n → ∞. Hence, P [Z = 0] → 0 as
n → ∞.

The above analysis can be extended to any graph H of a fixed size. Let ZH be the number
of copies of H in a random graph G generated according to Gn,p. Using the previous anal-

ysis, we have E [ZH ] = Θ
(

n|V(H)| · p|E(H)|
)

. Hence, E [Z] → 0 when p ≪ n−|V(H)|/|E(H)|

and E [Z] → ∞ when p ≫ n−|V(H)|/|E(H)|. Thus, it might be tempting to conclude that
p = n−|V(H)|/|E(H)| is the threshold probability for finding a copy of H. However, con-
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Figure 2: Subgraph H containing K4

sider the graph in Figure 2. For this graph, we have |V(H)|/|E(H)| = 5/7. But for p such
that p ≫ n−5/7 and p ≪ n−2/3, a random G is extremely unlikely to contain a copy of K4
and thus also extremely unlikely to contain a copy of H. For an arbitrary graph H, it was
shown by Bollobás [Bol81] that the threshold probability is n−λ, where

λ = min
H′⊆H

|V(H′)|
|E(H′)| .

2 Chernoff/Hoeffding Bounds

We now derive sharper concentration bounds for sums of independent random variables.
We start by considering n independent Boolean random variables X1, ..., Xn, where Xi takes
value 1 with probability pi and 0 otherwise. Let Z = ∑n

i=1 Xi. We set µ = E [Z] =

∑n
i=1 E [Xi] = ∑n

i=1 µi. We will try to derive a bound on the probability P [Z ≥ t] for
t = (1 + δ)µ. Using the fact that the function ex is strictly increasing, we get that for
λ > 0

P [Z ≥ (1 + δ)µ] = P
[
eλZ ≥ eλ(1+δ)µ

] (Markov)
≤

E
[
eλZ]

eλ(1+δ)µ
.

We now have:

E
[
eλZ

]
= E

[
eλ(X1+...Xn)

]
= E

[
n

∏
i=1

eλXi

]
(independence)

=
n

∏
i=1

E
[
eλXi

]
=

n

∏
i=1

[
µieλ + (1 − µi)

]
=

n

∏
i=1

[
1 + µi(eλ − 1)

]
.

At this point, we utilize the simple but very useful inequality:

∀x ∈ R, 1 + x ≤ ex.
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Since all the quantities in the previous calculation are non-negative, we can plug the above
inequality in the previous calculation and we get:

E
[
eλZ

]
≤

n

∏
i=1

exp
(
(eλ − 1)µi

)
= exp

(
(eλ − 1)µ

)
Thus, we get

P [Z ≥ (1 + δ)µ] ≤ exp
(
(eλ − 1)µ − λ(1 + δ)µ

)
.

We now want to minimize the right hand-side of the above inequality, with respect to λ.
Setting the derivative of the exponent to zero, we get

eλµ − (1 + δ)µ = 0 ⇒ λ = ln(1 + δ) .

Using this value for λ, we get

P [Z ≥ (1 + δ)µ] ≤
exp

(
(eλ − 1)µ

)
exp

(
λ(1 + δ)µ

) =
eδµ

(1 + δ)(1+δ)µ
=

(
eδ

(1 + δ)1+δ

)µ

.

Exercise 2.1 Prove similarly that

P [Z ≤ (1 − δ)µ] ≤
(

e−δ

(1 − δ)1−δ

)µ

.

(Note that P [Z ≤ (1 − δ)µ] = P
[
e−λZ ≥ e−λ(1−δ)µ

]
.) When δ ∈ (0, 1), the bounds above

expressions can be simplified further. It is easy to check that(
eδ

(1 + δ)1+δ

)µ

≤ e−δ2µ/3, 0 < δ < 1 .

So we get:
P [Z ≥ (1 + δ)µ] ≤ e−δ2µ/3, for 0 < δ < 1.

Similarly:
P [Z ≤ (1 − δ)µ] ≤ e−δ2µ/3, for 0 < δ < 1.

Combining the two we get

P [|Z − µ| ≥ δµ] ≤ 2 · e−δ2µ/3, for 0 < δ < 1.

The above is only one of the proofs of the Chernoff-Hoeffding bound. A delighful paper
by Mulzer [Mul18] gives several other proofs with different applications.
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2.1 Coin tosses once more

We will now compare the above bound with what we can get from Chebyshev’s inequality.
Let’s assume that X1, ..., Xn are independent coin tosses, with P [Xi = 1] = 1

2 . We want to
get a bound on the value of Z = ∑n

i=1 Xi. Using Chebyshev’s inequality, we get that

P [|Z − µ| ≥ δµ] ≤ Var [Z]
δ2µ2 .

And since in this particular case we have that Var [Z] = n/4 and µ = n/2, we get that

P [|Z − µ| ≥ δµ] ≤ 1
δ2n

.

The above bound is only inversely polynomial in n, while the Chernoff-Hoeffding bound
gives

P [|Z − µ| ≥ δµ] ≤ 2 · exp (−δ2n/24) ,

which is exponentially small in n. This fact will prove very useful when taking a union
bound over a large collection of events, each of which may be bounded using a Chernoff-
Hoeffding bound.

Let us also compare the bound we get for a deviation which is comparable to the stan-
dard deviation (square root of the variance) of the the random variable Z. Consider the
probablility P

[∣∣Z − n
2

∣∣ ≥ k
√

n
]
. By Chebyshev’s inequality, this can be bounded as

P
[∣∣∣Z − n

2

∣∣∣ ≥ k
√

n
]

= P
[
|Z − µ| ≥ k

√
n
]

≤ Var [Z]
k2 · n

=
1

4k2 .

On the other hand, using the above version of Chernoff-Hoeffding bounds with δ =
2k/

√
n gives

P
[∣∣∣Z − n

2

∣∣∣ ≥ k
√

n
]

= P

[∣∣∣Z − n
2

∣∣∣ ≥ 2k√
n
· n

2

]
≤ 2 exp

(
−2k2/3

)
.

Which gives a much stronger dependence on k which is (up to a factor 2) the number of
standard deviations we are far from the mean. In general, tail probabilities which decrease
as exp(−Ω(k2)) are referred to as “sub-gaussian” tails, and we will soon discuss Gaussian
random variables which are the prototypical example of such behavior.
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