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1 Randomized polynomial identity testing

We use our knowledge of events and conditioning, to prove the following lemma, which
gives an algorithm for testing if a polynomial f in n variables x1, . . . , xn over a field F is
identically zero. While this is usually referred to as the Schwartz-Zippel lemma, or the
DeMillo-Lipton- Schwartz-Zippel lemma, it actually has a longer history as described in
(Section 3.1 of) this article by Arvind et al. [AJMR19]. We refer to it as the polynomial
identity lemma.

Lemma 1.1 (Polynomial identity lemma) Let f (x1, x2, . . . , xn) be a non-zero polynomial of
degree d ≥ 0, i.e.,

f (x1, x2, . . . , xn) = ∑ ci1i2 ...in · xi1
1 · xi2

2 · · · xin
n

s.t., i1 + i2 + . . . + in ≤ d

over a field, F. Let S ⊆ F, be a finite subset and let x1, x2, . . . , xn be selected uniformly at random
from S, independently. Then,

P [ f (x1, x2, . . . , xn) = 0] ≤ d
|S| .

Proof: We will prove this lemma by induction on n. This lemma can be proved simply by
using conditional probability.

Base Case : n = 1
A non zero polynomial, f (x1) can have at most d roots. Hence, P [ f (x1) = 0] ≤ d

|S| .

Induction Step
Assume that the lemma holds for any polynomial in n− 1 variables. We need to prove that
it holds true for f (x1, x2, . . . , xn). We can write f as:

f (x1, x2, . . . , xn) = xk
1 · g(x2, . . . , xn) + h(x1, x2, . . . , xn)
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where, k is largest degree of x1. Thus we have 0 < k ≤ d (if k = 0 then we are already
done). We also have that deg(g(x2, . . . , xn)) ≤ d − k.

Now let us define two events.

E ≡ { f (x1, x2, . . . , xn) = 0} and F ≡ {g(x2, . . . , xn) = 0}

We can then write,

P [E] = P [F] · P [E|F] + P [¬F] · P [E|¬F] .

We now analyze each of the terms. By the induction hypothesis, we have

P [F] = P [g(x2, . . . , xn) = 0] =
d − k
|S| .

Also, fixing the values of x2 = a2, . . . , xn = an such that g(a2, . . . , an) ̸= 0, f (x1, a2, . . . , an)
is a degree-k polynomial in x1. Thus, using the base case, we get that

P [E|¬F] ≤ k
|S| .

Bounding the other two probabilities by 1, we get that

P [E] ≤ d − k
|S| · 1 + 1 · k

|S| =
d
|S|

as desired.

1.1 An application: bipartite perfect matching

Consider the following example which applied the Schwartz-Zippel lemma for testing if a
given bipartite graph has a perfect matching. Given a bipartite graph, G = (U, V, E) with
|U| = |V| = n, we say that the graph has a perfect matching, if there exists a set E′ ⊆ E of
n edges, with exactly one edge in E′ being incident on every vertex of G.

Let us define the Tutte matrix A as

Aij =

{
xij if (i, j) ∈ E
0 else

Note that A is not necessarily symmetric. The determinant of A can be written as,

Det(A) = ∑
π:[n]→[n]

sign(π)
n

∏
i=1

Ai,π(i)

where π defines the permutation from rows to columns. Note that the determinant is a
degree-n polynomial in the variables xij. Verify the follwing:
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Exercise 1.2 G has a perfect matching if and only if Det(A) ̸≡ 0.

In this case, computing the determinant is expensive with n! terms. But if we are given
the values of the variables xij, we can simply compute the determinant using the Gaus-
sian elimination method. The degree of the polynomial above is n. Thus, if we assign
all variables randomly from a set of 2n real values, if Det(A) ̸≡ 0, we will detect it with
probability at least 1/2.

The randomized algorithm given by the polynomial identity lemma can be used to par-
allelize the checking as well. There is no known deterministic algorithm for this problem
which can be parallelized efficiently.

2 The probabilistic method

We now come to very powerful method for proving the existence of several interesting
combinatorial objects. The general framework, known as the “probabilistic method” has
many variants explored in the beautiful (and highly recommended!) book on the subject
by Alon and Spencer [AS08].

We will explore vanilla version of the method, known as the first moment method, which
only requires computing expectations. At the heart of it is the simple idea captured by the
following proposition.

Proposition 2.1 Let X : Ω → R be a random variable such that E [X] ≥ c for some c ∈ R. Then,
there exists ω ∈ Ω (with probability measure ν(ω) > 0) such that X(ω) ≥ c.

Proof: Suppose that for all ω ∈ Ω with ν(ω) > 0, we have X(ω) < c. Then,

E [X] = ∑
ω∈Ω

ν(ω) · X(ω) < ∑
ω∈Ω

ν(ω) · c = c ,

which contradicts the fact that E [X] ≥ c.

Exercise 2.2 Prove that if E [X] ≤ c, then there exists ω ∈ Ω (with ν(ω) > 0) such that
X(ω) ≤ c.

Exercise 2.3 Is it true that if E [X] = c, then there exists ω ∈ Ω with X(ω) = c?

The above simple proposition can yield very interesting results, when the random variable
X is set-up properly. In particular, when we want X to measure some property of a com-
binatorial object, and we set up the distribution such that E [X] is close to some bound we
are interested in, we get that there exists a combinatorial object achieving those bounds.
We will see a few examples of this principle.
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2.1 A randomized algorithm for Max 3-SAT

Recall that a 3-SAT formula φ is of the form

φ ≡ C1 ∧ · · · ∧ Cm ,

where each Ci is a clause of the form Ci = (li1 ∨ li2 ∨ li3) and each lij is in turn xij or its
negation xij . We assume that each clause contains three distinct variables.

In the problem Max 3-SAT, the goal is not necessarily to satisfy all the clauses, but rather
find an assignment to the variables which satisfies as many clauses as possible. We show
that for any formula φ with m clauses, there exists an assignment satisfying 7m/8 clauses.
Moreover, this can be turned into an algorithm, and one can efficiently find an assignment
satisfying 7m/8 clauses.

Consider assigning each of the variables x1, . . . , xn a value in {0, 1} independently at ran-
dom. Let Z be a random variable equal to the number of clauses satisfied by the random
assignment. We can write

Z = Y1 + · · ·+ Ym ,

where Yi if the clause Ci is satisfied and 0 otherwise. By linearity of expectation E [Z] =
∑m

i=1 E [Yi]. Note Ci = (li1 ∨ li2 ∨ li3) is not satisfied if and only if li1 = li2 = li3 = 0
which happens with probability 1/8 since the three literals correspond to three distict vari-
ables, which are assigned values 0 and 1 independently with probability 1/2 each. Thus,
P [Yi = 0] = 1/8, which gives

E [Z] =
m

∑
i=1

E [Yi] =
m

∑
i=1

(
1 − 1

8

)
=

7m
8

.

Thus, there exists an assignment which satisfies at least 7m/8 clauses. We now argue that
it can be found efficiently. Note that

E [Z] =
1
2
· E [Z | x1 = 0] +

1
2
· E [Z | x1 = 1] .

Thus, at least one of the expectations on the right hand side must be at least 7m/8. We now
need the fact that each of these expectations can be computed efficiently.

Exercise 2.4 Given access to the 3-SAT formula φ, the expectations E [Z | x1 = 0] and E [Z | x1 = 1]
can both be computed in time O(m) where m is the number of clauses. Actually, it is also possible
to do this in time O(t) if x1 appears in only t clauses and we are given the list of these clauses.

Using the above, we can find a value b1 ∈ {0, 1} such that

E [Z | x1 = b1] ≥ 7m
8

.
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Continuing similarly by induction, we can find b1, . . . , bn such that

E [Z | x1 = b1, . . . , xn = bn] ≥ 7m
8

.

Since Z is fixed given the values of all the variables, we get that the assignment (b1, . . . , bn)
satisfies at least 7m/8 clauses.

2.2 Independent Sets

Let us consider one more application of the Probabilistic Method, which is a powerful tool
show the existence of objects with certain properties without necessarily constructing them.
In the previous lecture we used probabilistic reasoning to show that there exists an assign-
ment to a 3-SAT formula with m clauses satisfying 7m/8 clauses, and then also gave an
algorithm to find such an assignment. We will now use the method to show the existence
of large independent sets in graphs.

Consider a graph G = (V, E). A set S ⊆ V is said to be an independent set if no edge lies
completely within the set S. That is, ∀e = {i, j}, either i /∈ S or j /∈ S. We are interested in
finding a large independent set.

Let N(i) denote the set of all neighbors of i i.e., N(i) = {j | {i, j}} ∈ E and let deg(i) =
|N(i)|. Let us first consider a weaker statement which can be proved without any proba-
bilistic reasoning at all.

Proposition 2.5 Let G = (V, E) be a graph with n vertices and let d be such that deg(i) ≤ d for
all i ∈ [n]. Then there exists an independent set S of size |S| ≥ n

d+1 .

Proof: Start with S = ∅ and consider the vertices of the graph in the order 1, . . . , n. When
considering vertex i, if none of the neighbors of i (vertices in N(i))) are already included in
S, then include i in S. At any step in this process, including a vertex in S removes at most d
vertices from being included later. Since at the end, we finish processing all the n vertices,
we must have |S| ≥ n

d+1 .

The above bound is good in some cases, but the degrees of vertices in the graph might vary
a lot and in particular asking for a uniform bound d which holds for all vertices might be
too lossy (consider a “star” graph with one vertex connected to n − 1 others, and no other
edges). The following result gives a much better bound.

Theorem 2.6 Let G = (V, E) be a graph with n vertices. Then there exists an independent set S
such that

|S| ≥
n

∑
i=1

1
deg(i) + 1

≥ n
maxi{deg(i)}+ 1

.

5



The main trick in such kind of problems is to set up the right kind of probabilistic exper-
iment, the analysis is usually quite easy. In this question, we can’t do everything inde-
pendently unlike in some previous questions. Suppose that we do - and hence pursue the
following idea: Put each vi in S with probability p. We can’t guarantee that we would not
pick up both the endpoints of an edge to keep in S. However, this idea can also be made
to work and is very useful in some settings. For now, we will prove the theorem using the
observation that we can run the greedy algorithm starting with a random ordering of the
vertices, instead of the fixed ordering 1, . . . , n. If we have an example where we have a
single high-degree vertex surrounded by low-degree vertices, then in a random ordering
we are much more likely to process one of the low-degree neighbors first (which are all
good for the analysis).

Proof: Pick a random permutation π of the vertices {1, 2, . . . n}. We define the set S as
the set of all vertices which appear before all their neighbors in the ordering given by the
permutation π.

S = {i | π(i) < π(j) ∀j ∈ N(i)} .

This is clearly an independent set since if i ∈ S, then for all j ∈ N(i), we have π(j) > π(i)
and hence j /∈ S. We now analyze the size of this independent set. We have |S| = ∑i Xi,
where

Xi =

{
1 if i ∈ S
0 otherwise

Thus, E [|S|] = ∑i E [Xi]. To compute E [Xi], we notice that a random permutation of [n]
also induces a random ordering of the set {i} ∪ N(i). The probability that i appears before
any of its neighbors in the ordering is 1/(deg(i) + 1). Thus,

E [Xi] =
1

deg(i) + 1
,

which gives

E [|S|] =
n

∑
i=1

1
deg(i) + 1

,

and hence there must exist an independent set S with the above size.

3 Tail Inequalities

We will develop some inequalities which let us bound the probability of a random variable
taking a value very far from its expectation.
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3.1 Markov’s Inequality

This is the most basic inequality we will use. This is useful if the only thing we know about
a random variable is its expectation. It will also be useful to derive other inequalities later.

Lemma 3.1 (Markov’s Inequality) Let Z be non-negative variable. Then,

P [Z ≥ t] ≤ E [Z]
t

. (1)

Proof: We start by considering the event E ≡ {Z ≥ t}. We can then write,

E [Z] = P [E] · E [Z | E] + P [Ec] · E [Z | Ec] .

Using non-negativity of Z, we get

E [Z] ≥ P [E] · E [Z | E] ≥ P [E] · t = P [Z ≥ t] · t ,

which completes the proof.

3.2 Chebyshev’s Inequality

The variance of a random variable X is defined as

Var [X] = E
[
(X − E [X])2] = E

[
X2]− (E [X])2

Also, for two random variables X and Y, we define the covariance as

Cov [X, Y] = E [(X − E [X])(Y − E [Y])] = E [XY]− E [X] · E [Y] .

Lemma 3.2 (Chebyshev’s inequality) Let Z be a random variable and let µ = E [Z]. Then,

P [|Z − µ| ≥ t] ≤ Var [Z]
t2 =

E
[
(Z − µ)2]

t2 . (2)

Proof: Consider the non-negative random variable (Z− µ)2. Applying Markov’s inequal-
ity we have

P [|Z − µ| ≥ t] = P
[
(Z − µ)2 ≥ t2] ≤

E
[
(Z − µ)2]

t2 .
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3.3 Coin tosses revisited

An unbiased coin is tossed n times. Probability that head shows up in each toss is 1
2 . Let Z

be a random variable for the number of heads that have showed up after n tosses. We also
have random variables X for ith coin toss, where Xi = 1 if head shows up in ith toss and 0
otherwise.

So we have

Z =
n

∑
i=1

Xi and E [Z] =
n

∑
i=1

E [Xi] =
n
2

.

Let us now compare the kind of bounds we get using Markov’s and Chebyshev’s inequal-
ities.

Application of Markov’s inequality . Using Markov’s inequality we have,

P

[
Z ≥ 3n

4

]
≤ E [Z]

(3n/4)
⇒ P

[
Z ≥ 3n

4

]
≤ 2

3
⇒ P

[
Z − n

2
≥ n

4

]
≤ 2

3
.

Application of Chebyshev’s inequality . We will show that Chebyshev’s inequality
gives a stronger bound on probability. Since Z is a Binomial random variable, we have
that

Var [Z] = n · 1
2
·
(

1 − 1
2

)
=

n
4

.

Applying Chebyshev’s inequality we have,

P
[∣∣∣Z − n

2

∣∣∣ ≥ t
]

≤ n
4t2 .

Setting t = n/4 and t =
√

n, gives the following bounds

P
[∣∣∣Z − n

2

∣∣∣ ≥ n
4

]
≤ 4

n
and P

[∣∣∣Z − n
2

∣∣∣ ≥ √
n
]

≤ 1
4

Thus, Chebyshev’s inequality gives a much stronger bound on a deviation of n/4 from
the mean, and can also bound the probability of deviations as small as

√
n. In particular, it

gives a non-trivial bound whenever the deviation is larger than
√

Var [Z], a quantity which
is referred to as the standard deviation of the random variable Z.
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