

Lecture 11: November 4, 2025

Lecturer: Madhur Tulsiani

1 More on probability spaces

1.1 Conditioning

Conditioning on an event A is equivalent to restricting the probability space to the set A . We then consider the conditional probability measure ν_A defined as

$$\nu_A(\omega) = \begin{cases} \frac{\nu(\omega)}{\mathbb{P}[A]} & \text{if } \omega \in A \\ 0 & \text{otherwise} \end{cases}.$$

Thus, one can define the conditional probability of an event B as

$$\mathbb{P}[B | A] = \sum_{\omega \in B} \nu_A(\omega) = \sum_{\omega \in A \cap B} \frac{\nu(\omega)}{\mathbb{P}[A]} = \frac{\mathbb{P}[A \wedge B]}{\mathbb{P}[A]}.$$

For a random variable X and an event A , we similarly define the *conditional expectation* of X given A as

$$\mathbb{E}[X | A] = \sum_{\omega} \nu_A(\omega) \cdot X(\omega),$$

with ν_A as above. Verify the following identities.

Proposition 1.1 (Total Probability and Total Expectation) *Let Ω be a finite “outcome space” with probability measure ν . Let $A, B \subseteq \Omega$ be events, and $X : \Omega \rightarrow \mathbb{R}$ be a random variable. Then*

1. $\mathbb{P}[B] = \mathbb{P}[A] \cdot \mathbb{P}[B | A] + \mathbb{P}[A^c] \cdot \mathbb{P}[B | A^c],$
2. $\mathbb{E}[X] = \mathbb{P}[A] \cdot \mathbb{E}[X | A] + \mathbb{P}[A^c] \cdot \mathbb{E}[X | A^c].$

1.2 Independence

Now that we have the notion of conditioning, we can define independence. Two non-zero probability events A and B are independent if $\mathbb{P}[A | B] = \mathbb{P}[A]$. One can verify that this is

equivalent to $\mathbb{P}[B | A] = \mathbb{P}[B]$. In other words, restricting to one event does not change the probability of the other event. Independence is a joint property of events and the probability measure: one cannot make judgment about independence without knowing the probability measure.

Two random variables X and Y defined on the same finite probability space are defined to be independent if

$$\mathbb{P}[X = x | Y = y] = \mathbb{P}[X = x]$$

for all non-zero probability events $\{X = x\} := \{\omega : X(\omega) = x\}$ and $\{Y = y\} := \{\omega : Y(\omega) = y\}$.

In general (not necessarily finite) probability spaces, random variables X and Y are said to be independent if

$$\mathbb{P}\{X \in X(A) | Y \in Y(B)\} = \mathbb{P}\{X \in X(A)\},$$

for all non-zero probability events A and B , where $X(A)$ denotes the images of $A \subseteq \Omega$ under the function X , and $\{X \in X(A)\} := \{\omega : \exists \omega' \in A, X(\omega) = X(\omega')\}$.

The notion of independence can also be generalized (in multiple ways) beyond the case of two events or random variables. We say n events A_1, \dots, A_n are mutually independent (sometimes we will just say “independent”, since this is the most commonly used notion of independence for multiple events) if for all subsets $S \subseteq \{1, \dots, n\}$ we have:

$$\mathbb{P}\left(\bigcap_{i \in S} A_i\right) = \prod_{i \in S} \mathbb{P}(A_i).$$

We say n random variables X_1, \dots, X_n are mutually independent if for all values x_1, \dots, x_n , the events “ $X_1 = x_1$ ”, ..., “ $X_n = x_n$ ” are mutually independent.

There are also weaker notions of independence that are often useful. We say n events are pairwise independent if all pairs are independent, and likewise for random variables i.e., we have the above condition only for sets S of size two.

$$\forall S \subseteq \{1, \dots, n\}, |S| = 2 \quad \mathbb{P}\left(\bigcap_{i \in S} A_i\right) = \prod_{i \in S} \mathbb{P}(A_i).$$

More generally, the notion of k -wise independence is defined by considering the above condition for all S with $|S| \leq k$.

Exercise 1.2 *Can you think of three events, or three random variables, that are pairwise independent but not mutually independent?*

We saw that for any two random variables X and Y we have $\mathbb{E}[X] + \mathbb{E}[Y] = \mathbb{E}[X + Y]$. However, it is not in general the case that $\mathbb{E}[X] \cdot \mathbb{E}[Y] = \mathbb{E}[X \cdot Y]$ (for example, suppose X and Y are indicator random variables for the same event of probability p ; then the LHS is p^2 but the RHS is p). Nonetheless, we *do* get this property when X and Y are independent.

Proposition 1.3 *Let $X, Y : \Omega \rightarrow \mathbb{R}$ be two independent random variables. Then*

$$\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y].$$

Proof:

$$\begin{aligned} \mathbb{E}[X] \cdot \mathbb{E}[Y] &= \left(\sum_a \mathbb{P}(X = a) \cdot a \right) \cdot \left(\sum_b \mathbb{P}(Y = b) \cdot b \right) \\ &= \sum_{a,b} a \cdot b \cdot \mathbb{P}(X = a) \cdot \mathbb{P}(Y = b) \\ &= \sum_{a,b} a \cdot b \cdot \mathbb{P}(X = a \wedge Y = b) \quad (\text{by independence}) \\ &= \sum_c \sum_{(a,b):ab=c} a \cdot b \cdot \mathbb{P}(X = a \wedge Y = b) \quad (\text{grouping}) \\ &= \sum_c c \cdot \mathbb{P}(X \cdot Y = c) = \mathbb{E}[X \cdot Y]. \end{aligned}$$

■

Exercise 1.4 *Check that the converse of the above statement is false i.e., there are random variables X, Y such that $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$, but X and Y are not independent.*

1.3 The countably infinite case

The concepts defined in the previous and current lecture for finite probability spaces extend almost verbatim to the the case when the space Ω is countably infinite i.e., there exists a bijection from Ω to the set \mathbb{N} of natural numbers. However, we need to be careful about the convergence of summations over $\omega \in \Omega$ as these may be infinite sums, which need to be defined via limits. The extension to the case of uncountably infinite Ω (such as $\Omega = [0, 1]$) requires some additional concepts, and we will discuss this in a later lecture.

1.4 Variance

We will now see some very useful random variables. We will also compute the expectation, and another quantity called the *variance* of these random variables, which is a commonly used measure of how “spread” is a random variable. For example a variable X which is always 0, and Y which is ± 1 with probability 1/2 each, have the same expectation, but the notion of variance can be used to capture the fact that the distribution of Y is spread over more values than that of X (i.e., Y varies more than X).

For a (real-valued) random variable X , the variance is defined as

$$\text{Var}[X] := \mathbb{E}[(X - \mathbb{E}[X])^2]$$

Note that the inner expectation is a *constant*. Using (say) μ to denote $\mathbb{E}[X]$, we can also write another expression for the variance.

$$\text{Var}[X] = \mathbb{E}[(X - \mu)^2] = \mathbb{E}[X^2 - 2\mu \cdot X + \mu^2] = \mathbb{E}[X^2] - 2\mu^2 + \mu^2 = \mathbb{E}[X^2] - \mu^2.$$

Thus, we can use either of the two expressions below to compute the variance.

$$\text{Var}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2.$$

Since the first expression is always non-negative, we also get a proof of the very useful inequality that $\mathbb{E}[X^2] \geq (\mathbb{E}[X])^2$.

Exercise 1.5 *Can you derive the inequality $\mathbb{E}[X^2] \geq (\mathbb{E}[X])^2$ using the Cauchy-Schwarz-Bunyakovsky inequality?*

2 Some important random variables

2.1 Bernoulli random variables

A Bernoulli(p) random variable X is defined as taking the value 1 with probability p and the value 0 with probability $1 - p$. We can write this as $\mathbb{P}[X = x] = p^x(1 - p)^{1-x}$. One may intuitively think of a Bernoulli random variable as the indicator function of "heads" in an outcome space $\Omega = \{\text{tails, heads}\}$ of a biased coin toss. Alternatively, we simply take the outcome space to be $\Omega = \{0, 1\}$. More generally, indicator functions of events are Bernoulli random variables.

Let X be a Bernoulli(p) random variable. Then, we have

$$\mathbb{E}[X] = 1 \cdot p + 0 \cdot (1 - p) = p = \mathbb{P}[X = 1].$$

The fact that for a Bernoulli random variable X , $\mathbb{E}[X] = \mathbb{P}[X = 1]$ is extremely useful, particularly when combined with the linearity of expectation, to analyze random variables which can be written as a sum of Bernoulli variables. We can also compute $\text{Var}[X]$, using the fact that $X^2 = X$, since $X \in \{0, 1\}$

$$\text{Var}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 = p - p^2 = p \cdot (1 - p).$$

2.2 Finite Bernoulli i.i.d. sequences and Binomial random variables

Another important random variable is a sum of (mutually) *independent* and indentical Bernoulli random variables. We first define the probability space corresponding to a (finite) collection of Bernoulli variables.

Finite Bernoulli i.i.d. sequence We can also think of a sequence of coin tosses, with

$$X_i = \begin{cases} 1 & \text{if toss } i \text{ is heads} \\ 0 & \text{if toss } i \text{ is tails} \end{cases}.$$

being n Bernoulli random variables in the probability space $\Omega_n = \{0, 1\}^n$, i.e., $X_i(\omega) = \omega_i$. Define the product probability measure on this finite space using:

$$\nu_n(\omega) = \prod_{i=1}^n p^{\omega_i} (1-p)^{1-\omega_i}.$$

Note that if $p = \frac{1}{2}$, we have $\nu_n(\omega) = \frac{1}{2^n}$, i.e., \mathbb{P}_n is the uniform distribution over the outcome space, as all outcomes are equally likely.

Exercise 2.1 For the outcome space defined above, verify that:

- For any fixed i , X_i is indeed a Bernoulli(p) random variable, and
- If $I \subset [n]$ and $J \subset [n]$ are disjoint, then any function of X_I and any function of X_J are independent random variables.

As noted in the previous lecture, when the latter point holds, we simply say that X_1, \dots, X_n are (mutually) independent. Furthermore since all the X_i have the same distribution, we call the sequence i.i.d., meaning independent and identically distributed.

Binomial random variables Let Z_n be a random variable counting the number of heads associated with n independent biased coin tosses. We can model this in Ω_n above as $Z_n = \sum X_i$.

Let us calculate the expectation of Z . By linearity we have $\mathbb{E}[Z_n] = \sum \mathbb{E}[X_i]$. Since $Z_n = \sum X_i$, we have, $\mathbb{E}[Z_n] = \sum \mathbb{E}[X_i]$. Now,

$$\begin{aligned} \mathbb{E}[X_i] &= 1 \cdot \mathbb{P}[X_i = 1] + 0 \cdot \mathbb{P}[X_i = 0] \\ &= \mathbb{P}[X_i = 1] = p \end{aligned}$$

Hence $\mathbb{E}[Z_n] = n \cdot p$. Note that we did not use independence in the above calculations. We just needed that for each i , $\mathbb{E}[X_i] = p$. Let us now compute the variance.

$$\text{Var}[Z_n] = \mathbb{E}[Z_n^2] - (\mathbb{E}[Z_n])^2 = \mathbb{E}[Z_n^2] - (n \cdot p)^2.$$

Thus, we need to compute the first term $\mathbb{E}[Z_n^2]$ to understand the variance. We can write

$$\begin{aligned}\mathbb{E}[Z_n^2] &= \mathbb{E}\left[\left(\sum_{i=1}^n X_i\right)^2\right] \\ &= \mathbb{E}\left[\left(\sum_{i,j} X_i \cdot X_j\right)\right] \\ &= \sum_{i,j} \mathbb{E}[X_i \cdot X_j] \\ &= \sum_i \mathbb{E}[X_i^2] + \sum_{i \neq j} \mathbb{E}[X_i \cdot X_j] \\ &= n \cdot p + n(n-1) \cdot p^2,\end{aligned}$$

where we used the fact that $\mathbb{E}[X_i \cdot X_j] = \mathbb{E}[X_i] \cdot \mathbb{E}[X_j] = p^2$ using independence, when $i \neq j$. Using the above, we get that

$$\text{Var}[Z_n] = n \cdot p + n(n-1) \cdot p^2 - n^2 \cdot p^2 = n \cdot p - n \cdot p^2 = n \cdot p(1-p) = \sum_i \text{Var}[X_i].$$

Exercise 2.2 Check that for any collection of pairwise independent (and not necessarily identical) random variables X_1, \dots, X_n , we still have that for $Z = \sum_i X_i$

$$\text{Var}[Z] = \sum_i \text{Var}[X_i].$$

We do need independence, and namely the product probability measure, to calculate $\mathbb{P}(Z_n = k)$ for $k \in [n]$ (this is often called the probability mass function. First note that the shorthand $(Z_n = k)$ simply means $\{\omega \in \Omega : Z_n(\omega) = k\}$. Since all ω that have the same number (in this case k) of 1's have the same probability, we simply need to count how many such ω 's there are, and multiply by this individual probability.

Exercise 2.3 Verify that $\mathbb{P}_n(Z_n = k) = \binom{n}{k} p^k (1-p)^{n-k}$.

Z_n is called a Binomial(n, p) random variable.

2.3 Infinite Bernoulli i.i.d. sequence and Geometric random variables

We would like to generalize the Bernoulli sequence probability space to an infinite sequence. We would like to choose $\Omega = \{0,1\}^{\mathbb{N}}$ as our outcome space, but this is not a countable set. We will come back to the issue of properly defining the probability space with this uncountable Ω .

For now, if we still consider the mental experiment of infinite i.i.d. Bernoulli(p) sequence of random variables X_1, X_2, \dots , which we interpret once more as coin tosses. We define Y be the number of tosses till the first heads. If we are just interested in Y (the first heads rather than all outcomes of all tosses), we can take Ω to be \mathbb{N} .

Exercise 2.4 *Although we cannot define a countable probability space for the infinite i.i.d. Bernoulli sequence, show that if we just want define a space for Y , we can take $\Omega = \mathbb{N}$ and $\mathbb{P}(i) = (1-p)^{i-1} \cdot p$ for $i \geq 1$.*

Y is known as a Geometric(p) random variable.

Let us calculate $\mathbb{E}[Y]$, in a somewhat creative way. Let E be the event that the first toss is heads. Then by total expectation we have,

$$\begin{aligned}\mathbb{E}[Y] &= \mathbb{E}[Y|E] \cdot \mathbb{P}[E] + \mathbb{E}[Y|E^c] \cdot \mathbb{P}[E^c] \\ &= 1 \cdot \mathbb{P}[E] + (1 + \mathbb{E}[Y]) \cdot (1 - p)\end{aligned}$$

Thus we have, $\mathbb{E}[Y] = \frac{1}{p}$. The main observation that we used here is that, thanks to independence, when the first toss is *not* heads, then the problem resets (with the hindsight of one consumed toss).

Exercise 2.5 *Compute $\text{Var}[Y]$ for a Geometric(p) random variable Y .*

3 Coupon Collection

Consider the following problem: There are n kinds of items/coupons and at each time step we get one coupon chosen to be from one of the n types at random. All types are equally likely at each step and the choices at different time steps are independent. We define a random variable, T which is the time when we first have all the n types of coupons. The goal is to find $\mathbb{E}[T]$. We can make the following claim:

$$T = \sum_{i=1}^n X_i,$$

where X_i is the time to get from the $i-1$ to the i types of coupons. Thus we have,

$$\mathbb{E}[T] = \sum_i \mathbb{E}[X_i]$$

Note that X_i is a geometric random variable with parameter $\frac{n-i+1}{n}$, since if we have $i-1$ type of coupons, X_i represents the time till we receive a coupon belonging to any one of the remaining $n-i+1$ types. Thus,

$$\mathbb{E}[X_i] = \frac{n}{n-i+1}.$$

Therefore,

$$\mathbb{E}[T] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \cdots + \frac{n}{1} = n \cdot H(n)$$

where $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$ is the n^{th} harmonic number. It is known (see Wikipedia for example) that $H_n = \ln n + \Theta(1)$. Thus, we have that $\mathbb{E}[T] = n \ln n + \Theta(n)$.