
Mathematical Toolkit Autumn 2025

Lecture 10: October 30, 2025
Lecturer: Madhur Tulsiani

1 The conjugate gradient method

In the previous lecture, we saw the steepest descent or gradient descent method for finding
a solution to the linear system Ax = b for A � 0. The method guarantees ‖xt − u‖ ≤
ε · ‖x0 − u‖ after t = O(κ · log(1/ε)) iterations, where κ is the condition number of the
matrix A, and u is the unique (unknown) solution to the system. We will see that the
conjugate gradient can obtain a similar guarantee in O(

√
κ · log(1/ε)) iterations.

For the steepest descent method, if we start from x0 = 0, we get

xt − u = (I − ηA)(−u) ,

which gives xt = p(A) · b for some polynomial p of degree at most t. The conjugate
gradient method just takes this idea of finding an x of the form p(A) · b and runs with it.
The method finds an xt = pt(A) · b where pt is the best polynomial of degree at most t
i.e., the polynomial which minimizes the function 1

2 〈Ax, x〉 − 〈b, x〉. However, the method
does not explicitly work with polynomials. Instead we use the simple observation that any
vector of the form pt(A) · b lies in the subspace Span

(
{b, Ab, . . . , Atb}

)
and the method

finds the best vector in the subspace at every time t.

Definition 1.1 Let ϕ : V → V be a linear operator on a vector space V and let v ∈ V be a vector.
The Krylov subspace of order t defined by ϕ and v is defined as

Kt(ϕ, v) := Span
({

v, ϕ(v), . . . , ϕt−1(v)
})

.

Thus, at step t of the conjugate gradient method, we find the best vector in the space
Kt(A, b) (we will just write the subspace as Kt since A and b are fixed for the entire ar-
gument). The trick of course is to be able to do this in an iterative fashion so that we can
quickly update the minimizer in the space Kt−1 to the minimizer in the space Kt. This can
be done by expressing the minimizer in Kt−1 in terms of a convenient orthonormal basis
{w0, . . . , wt−1} for Kt−1. It turns out that if we work with a basis which is orthonormal
with respect to the inner product 〈·, ·〉A, at step t we only need to update the component
of the minimizer along the new vector wt we get to obtain a basis for Kt.

1

1.1 The algorithm

Recall that we defined the inner product 〈x, y〉A := 〈Ax, y〉 where 〈·, ·〉 denotes the stan-
dard inner product on Rn. As before we consider the function 1

2 〈Ax, x〉 − 〈b, x〉 and pick

xt := arg min
x∈Kt

f (x) .

This can also be thought of as finding the closest point to u in the space Kt (under the
distance ‖·‖A) since

f (x) =
1
2
〈Ax, x〉 − 〈b, x〉 =

1
2
〈Ax, x〉 − 〈Au, x〉 =

1
2
〈x, x〉A − 〈u, x〉A

=
1
2
·
(
‖x− u‖2

A − ‖u‖
2
A

)
,

which gives
xt = arg min

x∈Kt

f (x) = arg min
x∈Kt

‖x− u‖A .

We have already seen how to compute find the characterize the closest point in a subspace,
to a given point. Let {w0, . . . , wt−1} be an orthonormal basis forKt under the inner product
〈·, ·〉A. Completing this to an orthonormal basis {w0, . . . , wn−1} for Rn, let u be expressible
as

u =
n−1

∑
i=0

ci · wi =
n−1

∑
i=0
〈u, wi〉A · wi .

Then we know that the closest point xt in Kt, under the distance ‖·‖A is given by

xt =
t−1

∑
i=0
〈u, wi〉A · wi =

t−1

∑
i=0
〈Au, wi〉 · wi =

t−1

∑
i=0
〈b, wi〉 · wi

Note that even thhough we do not know u, we can find xt given an orthonormal basis
{w0, . . . , wt−1}, since we can compute 〈b, wi〉 for all wi. This gives the following algorithm:

- Start with w0 = b/ ‖b‖A as an orthonormal basis for K1.

- Let xt = ∑t−1
i=0 〈b, wi〉 · wi for a basis {w0, . . . , wt−1} orthonormal under the inner

product 〈·, ·〉A.

- Extend {w0, . . . , wt−1} to a basis of Kt+1 by defining

vt = Atb−
t−1

∑
i=0

〈
Atb, wi

〉
A · wi and wt =

vt√
〈vt, vt〉A

.

2

- Update xt+1 = xt + 〈b, wt〉 · wt.

Notice that the basis extension step here seems to require O(t) matrix-vector multiplica-
tions in the tth iteration and thus we will need O(t2) matrix-vector multiplications in total
for t iterations. This would negate the quadratic advantage we are trying to gain over
steepest descent. However, in the homework you will see a way of extending the basis
using only O(1) matrix-vector multiplications in each step.

1.2 Bounding the number of iterations

Since xt lies in the subspace Kt, we have xt = p(A) · b for some polynomial p of degree at
most t− 1. Thus,

xt − u = p(A) · b− u = p(A) · A · u− u = (I − p(A) · A) · (x0 − u) ,

since x0 = 0. We can think of I − p(A)A as a polynomial q(A), where deg(q) ≤ t and
q(0) = 1. Recall from last lecture that the minimizer of f (x) is the same as the minimizer
of 〈x− u, x− u〉A = ‖x− u‖2

A. Since p(A)b is the minimizer of f (x) in Kt, we have

‖xt − u‖2
A = min

q∈Qt
‖q(A)(xo − u)‖2

A ,

where Qt is the set of polynomials defined as

Qt := {q ∈ R[z] | deg(q) ≤ t, q(0) = 1} .

Use the fact that if λ is an eigenvalue of a matrix M, then λt is an eigenvalue of Mt (with
the same eigenvector) to prove that the following.

Exercise 1.2 Let λ1, . . . , λn be the eigenvalues of A. Then for any polynomial q and any v ∈ Rn,

‖q(A)v‖A ≤
(

max
i
|q(λi)|

)
· ‖v‖A .

Using the above, we get that

‖xt − u‖A ≤
(

min
q∈Qt

max
i
|q(λi)|

)
· ‖x0 − u‖A .

Thus, the problem of bounding the norm of xt − u is reduced to finding a polynomial q of
degree at most t such that q(0) = 1 and q(λi) is small for all i.

Exercise 1.3 Verify that using q(z) =
(

1− 2z
λ1+λn

)t
recovers the guarantee of the steepest descent

method.

3

Note that the conjugate gradient method itself does not need to know anything about the
optimal polynomials in the above bound. The polynomials are only used in the analy-
sis of the bound. The following claim, which can be proved by using slightly modified
Chebyshev polynomials, suffices to obtain the desired bound on the number of iterations.

Claim 1.4 For each t ∈N, there exists a polynomial qt ∈ Qt such that

|qt(z)| ≤ 2 ·
(

1− 2√
κ + 1

)t

∀z ∈ [λ1, λn] .

We will prove the claim later using Chebyshev polynomials. However, using the claim we
have that

‖xt − u‖A ≤
(

min
q∈Qt

max
i
|q(λi)|

)
· ‖x0 − u‖A ≤ 2 ·

(
1− 2√

κ + 1

)t

· ‖x0 − u‖A .

Thus, O(
√

κ log(1/ε)) iterations suffice to ensure that ‖xt − u‖A ≤ ε · ‖x0 − u‖A.

1.3 Chebyshev polynomials

The Chebyshev polynomial of degree t is given by the expression

Pt(z) =
1
2
·
[(

z +
√

z2 − 1
)t

+
(

z−
√

z2 − 1
)t
]

.

Note that this is a polynomial since the odd powers of
√

z2 − 1 will cancel from the two
expansions. For z ∈ [−1, 1] this can also be written as

Pt(z) = cos
(

t cos−1(z)
)

,

which shows that Pt(z) ∈ [−1, 1] for all z ∈ [−1, 1].

Using these polynomials, we can define the required polynomials qt as

qt(z) =
Pt

(
λ1+λn−2z

λn−λ1

)
Pt

(
λ1+λn
λn−λ1

) .

The denominator is a constant which does not depend on z and the numerator is a poly-
nomial of degree t in z. Hence deg(qt) = t. Also, the denominator ensures that qt(0) = 1.
Finally, for z ∈ [λ1, λn], we have

∣∣∣λ1+λn−2z
λn−λ1

∣∣∣ ≤ 1. Hence, the numerator is in the range
[−1, 1] for all z ∈ [λ1, λn]. This gives

|qt(z)| ≤
1

Pt

(
λ1+λn
λn−λ1

) ≤ 2 ·
(√

κ − 1√
κ + 1

)t

= 2 ·
(

1− 2√
κ + 1

)t

.

4

The last bound above can be computed directly from the first definition of the Chebyshev
polynomials.

An detailed treatment of the conjugate gradient method, and a related method called the
Lanczos Method, which also uses the Krylov subspace, can be found in the excellent mono-
graph by Vishnoi [Vis13].

2 Basics of probability: the finite case

Probability theory is a mathematical framework used to model uncertainty and variabil-
ity in nature. It is by no means the only contender for this role, but has weathered many
trials through time. A good deal of probability theory was developed long before being
formalized in the way that we’re familiar with now, which is due to Kolmogorov. One
could cite the works of Laplace, Poisson, Gauss, to name a few. So in some sense the for-
malization we present here is not strictly necessary, at least for most simple problems. But
it does place the whole field on a very stable foundation, which is also helpful whenever
something challenges our grasp of this otherwise intuitive discipline.

We recall very briefly the basics of probability and random variables. For a much better
and detailed introduction, please see the lecture notes by Terry Tao, linked from the course
homepage.

2.1 Probability spaces

Let Ω be a finite set. Let ν : Ω→ [0, 1] be a function such that

∑
ω∈Ω

ν(ω) = 1.

We often refer to Ω as a sample space or outcome space and the function ν as a probability
distribution on this space. An event can be thought of as a subset of outcomes i.e., any
A ⊆ Ω defines an event, and we define its probability as

P [A] = ∑
ω∈A

ν(ω) .

2.2 Random Variables and Expectation

In a finite probability space, a real-valued random variable over Ω is any function X : Ω→ R.
So a random variable is technically neither random (it’s quite deterministic) nor a variable
(it’s a function), but it’s a terminology that has stuck.

5

In a finite probability space, we define the expectation of a random variable X as:

E [X] := ∑
ω∈Ω

ν(ω) · X(ω) .

An extremely useful fact about expectation is that is a linear transformation from the space
of random variables to R. In particular, if X and Y are random variables, then E [X + Y] =
E [X] + E [Y], and E [c · X] = c ·E [X].

Proposition 2.1 (Linearity of Expectation) For any two random variables X and Y, E [X + Y] =
E [X] + E [Y], and E [c · X] = c ·E [X].

Proof: This follows directly from the definition.

E [X + Y] = ∑
ω∈Ω

ν(ω) · (X(ω)+Y(ω)) = ∑
ω∈Ω

ν(ω) ·X(ω)+ ∑
ω∈Ω

ν(ω) ·Y(ω) = E[X]+E[Y].

The proof for E [c · X] = c ·E [X] is similar.

Example: Card shuffling Suppose we unwrap a fresh deck of cards and shuffle it until
the cards are completely random. How many cards do we expect to be in the same position
as they were at the start? To solve this, let’s think formally about what we are asking. We
are looking for the expected value of a random variable X denoting the number of cards
that end in the same position as they started. We can write X as a sum of indicator random
variables Xi, one for each card, where Xi = 1 if the ith card ends in position i and Xi = 0
otherwise. These Xi are easy to analyze: P(Xi = 1) = 1/n where n is the number of cards.
P(Xi = 1) is also E[Xi]. Now we use linearity of expectation:

E[X] = E[X1 + . . . + Xn] = E[X1] + . . . + E[Xn] = 1.

So, this is interesting: no matter how large a deck we are considering, the expected number
of cards that end in the same position as they started is 1.

References

[Vis13] Nisheeth K. Vishnoi, Lx = b, Foundations and Trends® in Theoretical Computer
Science 8 (2013), no. 1–2, 1–141. 5

6

	The conjugate gradient method
	The algorithm
	Bounding the number of iterations
	Chebyshev polynomials

	Basics of probability: the finite case
	Probability spaces
	Random Variables and Expectation

