
Mathematical Toolkit Autumn 2025

Homework 3
Due: November 14, 2025

Note: You may discuss these problems in groups. However, you must write up your own solutions
and mention the names of the people in your group. Also, please do mention any books, papers or
other sources you refer to. It is recommended that you typeset your solutions in LATEX.

1. Perturbation of eigenvalues. [2+2+4+4]
In this problem, we will apply the Gershgorin disc theorem to derive a bound on the
change in the eigenvalues of a matrix due to perturbation.

(a) Two matrices A, B ∈ Cn×n are called similar if there exists a non-singular matrix
S such that B = S−1AS. Show that if A and B are similar, then they have the
same eigenvalues.

(b) A matrix A is called diagonalizable if it is similar to a diagonal matrix. If A is
similar to a diagonal matrix Λ, find the eigenvalues of A in terms of the entries
of Λ.

(c) Let A ∈ Cn×n be a diagonalizable matrix such that S−1AS = Λ for a diagonal
matrix Λ. Let E ∈ Cn×n be an arbitrary matrix, which we think of as a “per-
turbation” of A. Let µ be an eigenvalue of A + E. Show that there exists an
eigenvalue λ of A such that

|λ − µ| ≤ max
i

n

∑
j=1

∣∣∣(S−1ES)ij

∣∣∣ .

(d) Show that when A and E are both Hermitian (self-adjoint) the estimate can be
improved. Note that in this case S is unitary (S∗S = id). Prove that If λ1 ≤
· · · ≤ λn are the eigenvalues of A, while µ1 ≤ · · · ≤ · · · µn are the eigenvalues
of A + E, then one can get for all i ∈ [n]:

|λi − µi| ≤ ∥E∥2 .

(Recall that ∥E∥2 = maxx ̸=0 ∥Ex∥2 / ∥x∥2. Also think about why is this estimate
better than the previous one.)

2. False alarm. [2 + 4 + 2]
Consider a test for a rare genetic mutation, which is administered to an individual
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chosen uniformly at random from a population of size (say) N. We define the follow-
ing events

M ≡ {A random individual has the genetic mutation}
T ≡ {The test is positive}

Note that the test may not be completely reliable i.e., it may not always detect the
presence or absence of the mutation correctly.

(a) Define an appropriate outcome space Ω to capture the above random experi-
ment (you don’t need to specify the probability measure).

(b) Suppose we are given the following additional information:

P [M] = ε (ε fraction of people have the mutation)
P [Tc | M] = δ0 (Probability of a false negative is δ0)

P [T | Mc] = δ1 (Probability of a false positive is δ1)

Calculate the probability that a person has the mutation given that the test is
positive.

(c) Let ε = δ0 = 1/1000 and δ1 = 1/100. Thus, the test has a false positive rate of

1% and false negative rate of 0.1%. Calculate
P [M|T]
P [Mc|T] . Is this is a reliable test

for the genetic mutation?

3. Random Polynomials. [2+2+2+4]
For a prime number p, recall that the field Fp has the elements {0, 1, . . . , p − 1}, with
addition and multiplication done modulo p. A degree-d polynomial in the variable
x over the field Fp (for pime p) is defined as:

P(x) = c0 + c1 · x + . . . + cd · xd ,

where the coefficients c0, . . . , cd, and the variable x all take values in Fp (and all ad-
dition and multiplication is done modulo p). A value x ∈ Fp is called a root of P if
P(x) = 0. Consider picking a random polynomial P by selecting c0, . . . , cd indepen-
dently and uniformly at random from Fp, and define the random variable

Z = Number of roots of P .

(a) Define an appropriate probability space Ω so that each possible degree-d poly-
nomial P corresponds to an outcome in Ω.

(b) Let a ∈ Fp. For a fixed x ∈ Fp, compute the probability

P [P(x) = a] .

Remember that the probability is over the choice of the polynomial P.

2



(c) Let Z be as defined above. Calculate E [Z].

(d) Calculate Var [Z].

4. Orthonormal bases for Krylov subspaces. [Optional problem. No need to submit]
Let V be a vector space and let φ : V → V be a linear operator. Let v ∈ V be any
vector. Then the subspace

Kt(φ, v) := Span
({

v, φ(v), φ2(v), . . . , φt−1(v)
})

,

is known as the Krylov subspace of order t defined by φ and v. In the conjugate
gradient algorithm, we need to compute an orthonormal basis for the space Kt(φ, v)
when V is an inner product space and φ is a self-adjoint operator with respect to this
inner product. Here we will show that one can improve on the complexity of the
Gram-Schmidt orthogonalization procedure when φ is a self-adjoint operator.

(a) Show that dim(Kt(φ, v)) ≤ t for all φ : V → V and all v ∈ V.

(b) For all v, w ∈ V, let the number of operations (arithmetic operations over C)
required to compute ⟨v, w⟩ and φ(v) be at most N. Then show that one can
apply the Gram-Schmidt process to the set

{
v, φ(v), φ2(v), . . . , φt−1(v)

}
to find

an orthonormal basis for Kt(φ, v) using O(t2 · N) operations.

(c) When using the conjugate gradient algorithm, a complexity of O(t2 · N) turns
out to be too large for computing an orthonormal basis. We have t = O(

√
κ)

and hence spending time O(t2 · N) in computing the basis would not give us
any advantage over steepest descent.
However, when φ is self-adjoint, an orthonormal basis can be computed using
O(t · N) operations. Assume dim(Kt(φ, v)) = t (and hence v ̸= 0). Use induc-
tion (on i) to show that there exists a set of orthonormal vectors {u0, . . . , ut−1}
such:

i. Span ({u0, . . . , ui−1}) = Ki(φ, v) for all i ≤ t.
ii. Span ({u0, . . . , ui−1, φ(ui−1)}) = Ki+1(φ, v) for all i ≤ t − 1.

iii.
〈

φ(ui), uj
〉
= 0 for all 1 ≤ i ≤ t − 1 and all j ≤ i − 2.

Note that to construct an orthonormal basis with the properties above, one only
needs to compute ⟨ui, φ(ui)⟩ and ⟨ui−1, φ(ui)⟩ at every step. Thus, the basis can
be constructed using O(t · N) operations.
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