1. Uniform Convergence. [3+7]

In machine learning, we are typically given a training set \(S = \{(x_1, y_1), \ldots, (x_n, y_n)\} \) of labeled examples that are assumed to be drawn independently from some underlying probability distribution \(D \). Here, \(x_i \) is an example and \(y_i \) is its associated label. E.g., \(x_i \) could be an image taken from the web or from the ImageNet database, and \(y_i \) could be a labeling of that image according to what is in it.

A learning algorithm uses this training set \(S \) in order to produce a classifier \(h \) (a function over the \(x \)'s) that it hopes will have low error on new examples drawn from \(D \). This is typically done by fixing a family \(\mathcal{H} \) of classifiers, such as a particular deep-network architecture, and then using one of various optimization methods to find some \(h \in \mathcal{H} \) with low error on \(S \) (e.g., for deep networks, this might be done using a greedy procedure called stochastic gradient descent). The hope is that by achieving low error on \(S \), this will translate to low error with respect to \(D \) (i.e., the classifier will “generalize well”).

For a classifier \(h \), define its true error as \(\text{err}_D(h) = \mathbb{P}_{(x,y) \sim D}[h(x) \neq y] \) and its empirical error as \(\text{err}_S(h) = \frac{1}{n} \sum_{i=1}^{n} 1_{h(x_i) \neq y_i} \). In other words, true error is the probability of making a mistake on a new random example whereas empirical error is the fraction of mistakes on \(S \). We will use Chernoff-Hoeffding bounds to show that if we have a sufficiently large data sample, then finding a hypothesis with low empirical error, also finds a hypothesis with low true error (with high probability over the choice of the data sample).

(a) Fix a hypothesis \(h \in \mathcal{H} \), and let the probability space be defined by choosing a data set \(S \) of \(n \) independent samples, each drawn according to the distribution \(D \) i.e., \(S \sim D^n \). Prove that we can write \(\text{err}_S(h) \) as

\[
\text{err}_S(h) = \frac{1}{n} \cdot \sum_{i=1}^{n} X_i,
\]

where \(X_1, \ldots, X_n \) are independent Bernoulli variables with parameter \(p = \text{err}_D(h) \).
(b) Use Chernoff-Hoeffding bounds to prove that there exists constants c_1, c_2 such that for any family of classifiers \mathcal{H}, and any $\varepsilon, \delta > 0$, if $S \sim D^n$ for

$$n \geq \frac{c_1}{\varepsilon^2} \left[\ln |\mathcal{H}| + \ln \left(\frac{c_2}{\delta} \right) \right],$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ satisfy $|\text{err}_S(h) - \text{err}_D(h)| \leq \varepsilon$.

For example, if \mathcal{H} is a deep-network architecture with s tunable weights that are 32-bit floating point numbers, then $\log |\mathcal{H}| = O(s)$. Interestingly, deep networks tend to generalize even when given much less data than in the above bound, and trying to give mathematical guarantees for this is a major direction of current research.

2. **Gaussian Random Variables.** [5+5+5]

Prove the following very useful facts about Gaussian random variables:

(a) Let $u, v \in \mathbb{R}^n$ be two vectors. Let $g \in \mathbb{R}^n$ be a random vector such that each coordinate g_i of g is distributed as a Gaussian random variable with mean 0 and variance 1, and any two coordinates g_i, g_j (for $i \neq j$) are independent. Then show that

$$\mathbb{E}_g [(u, g) \cdot (v, g)] = \langle u, v \rangle.$$

(b) Let g be a Gaussian random variable with mean 0 and variance 1. Show that for any $t \in \mathbb{R}$, we have

$$\mathbb{E} [e^{tg}] = e^{t^2/2}.$$

Comparing coefficients of t^{2k} on both sides, use this to show that for any $k \in \mathbb{N}$,

$$\mathbb{E} [g^{2k}] = \frac{(2k)!}{2^k \cdot k!}.$$

(c) Let g_1, g_2, g_3 and g_4 be (not necessarily independent) Gaussian random variables with mean 0. Additionally, assume that for all coefficients $a_1, \ldots, a_4 \in \mathbb{R}$, the linear combination $a_1 g_1 + \cdots + a_4 g_4$ is also a Gaussian random variable (note that you were asked to prove this in class for independent Gaussian random variables, and this property is not always true if g_1, \ldots, g_4 are not independent. But here we are restricting ourselves to g_1, \ldots, g_4 which satisfy this assumption).

Consider the function $\mathbb{E}_{g_1, g_2, g_3, g_4} [e^{a_1 g_1 + a_2 g_2 + a_3 g_3 + a_4 g_4}]$ in the variables t_1, t_2, t_3, t_4 and use it to show that

$$\mathbb{E} [g_1 g_2 g_3 g_4] = \mathbb{E} [g_1 g_2] \cdot \mathbb{E} [g_3 g_4] + \mathbb{E} [g_1 g_3] \cdot \mathbb{E} [g_2 g_4] + \mathbb{E} [g_1 g_4] \cdot \mathbb{E} [g_2 g_3].$$

This shows that for any four Gaussian random variables, the expectation of their product can be expressed in terms of their pairwise correlations! This is a special case of what is known as Wick’s theorem, which can also be proved by the above method.

(a) Let $g \sim N(0,1)$ be a Gaussian random variable with mean 0 and variance 1. Show that for $t \geq 1$

$$
P[g \geq t] = \int_t^{\infty} \frac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2} \, dx \leq e^{-t^2/2}.
$$

(b) Let $g_1, \ldots, g_n \sim N(0,1)$ be independent Gaussian random variables. Show that

$$
\mathbb{E} \left[\max_{i \in [n]} |g_i| \right] \leq 4\sqrt{n \ln n}.
$$

You may use the fact that for a non-negative random variable Z, the expectation can be computed as $\mathbb{E}[Z] = \int_0^\infty \mathbb{P}[Z \geq t] \, dt$.