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1 Random variables over uncountably infinite probability spaces

To define a random variable, we need to define a o-algebra on the range of the random
variable. A random variables is then defined as a measurable function from the probability
space to the range: functions where the pre-image of every subset in the range c-algebra
is an event in F.

An important case is when the range is [0,1] or R. In this case we say that we have a
real-valued random variable, and we use the Borel c-algebra unless otherwise noted. For
countable probability spaces, we wrote the expectation of a real-valued random variable as
a sum. For uncountable spaces, the expectation is an integral with respect to the measure.

E[X] = /QX(w)dv.

The definition of the integral with respect to a measure requires some amount of care,
though we will not be able to discuss this in much detail. Let v be any probability measure
over the space R equipped with the Borel c-algebra. Define the function F as

F(x) := v((—o0,x]),

which is well defined since the interval (—co, x] is in the Borel -algebra. This can be used
to define a random variable X such that P [X < x] = F(x). The function F is known as the
distribution function or the cummulative density function of X.

When the function F has the form
X
Fo) = [ f@z,
then f is called the density function of the random variable X. In this case, one typically

refers to X as a “continuous” random variable. To calculate the above expectation for
continuous random variables, we can use usual (Lebesgue) integration:

E[X] = /Rxf(x)dx.
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(The notion of density can be extended to between any two measures, via the Radon-
Nikodym theorem. In that context, the density f of a continuous random variable is
referred to as the Radon-Nikodym derivative with respect to the Lebesgue measure. In
the earlier example with the measure concentrated on the finite set T, the probability of
each point is the Radon-Nikodym derivative with respect to the counting measure of T:

VT = Yter 0t.)

2 Gaussian Random Variables

A Gaussian random variable X is defined through the density function
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where y is its mean and ¢? is its variance, and we write X ~ N (u,0?). To see the definition
gives a valid probability distribution, we need to show [ _-(x)dx = 1. It suffices to show
for the case that 1 = 0 and ¢? = 1. First we show the integral is bounded.

Claim21 [ = [ e=**/2dx is bounded.
Proof: We see that
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where we use the fact that I is even and after x = 2, ¢ isupper bounded by e™*. =

Next we show that the normalization factor is v/271.

Claim 2.2 > =271
Proof:
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This completes the proof that the definition gives a valid probability distribution. We prove
a useful lemma for later use.

Lemma 2.3 For X ~ N(0,1)and A € (0,1/2),
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