
Mathematical Toolkit Autumn 2021

Homework 5
Due: December 8, 2021

Note: You may discuss these problems in groups. However, you must write up your own solutions
and mention the names of the people in your group. Also, please do mention any books, papers or
other sources you refer to. It is recommended that you typeset your solutions in LATEX.

1. Uniform Convergence. [3+7]
In machine learning, we are typically given a training set S = {(x1, y1), . . . , (xn, yn)}
of labeled examples that are assumed to be drawn independently from some under-
lying probability distribution D. Here, xi is an example and yi is its associated label.
E.g., xi could be an image taken from the web or from the ImageNet database, and yi
could be a labeling of that image according to what is in it.

A learning algorithm uses this training set S in order to produce a classifier h (a
function over the x’s) that it hopes will have low error on new examples drawn from
D. This is typically done by fixing a family H of classifiers, such as a particular deep-
network architecture, and then using one of various optimization methods to find
some h ∈ H with low error on S (e.g., for deep networks, this might be done using a
greedy procedure called stochastic gradient descent). The hope is that by achieving
low error on S, this will translate to low error with respect to D (i.e., the classifier will
“generalize well”).

For a classifier h, define its true error as errD(h) = P(x,y)∼D [h(x) ̸= y] and its empirical
error as errS(h) = 1

n ∑n
i=1 1h(xi) ̸=yi

. In other words, true error is the probability of
making a mistake on a new random example whereas empirical error is the fraction
of mistakes on S. We will use Chernoff-Hoeffding bounds to show that if we have
a sufficiently large data sample, then finding a hypothesis with low empirical error, also
finds a hypothesis with low true error (with high probability over the choice of the
data sample).

(a) Fix a hypothesis h ∈ H, and let the probability space be defined by choosing a
data set S of n independent samples, each drawn according to the distribution
D i.e., S ∼ Dn. Prove that we can write errS(h) as

errS(h) =
1
n
·

n

∑
i=1

Xi ,

where X1, . . . , Xn are independent Bernoulli variables with parameter p = errD(h).
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(b) Use Chernoff-Hoeffding bounds to prove that there exists constants c1, c2 such
that for any family of classifiers H, and any ε, δ > 0, if S ∼ Dn for

n ≥ c1

ε2

[
ln |H|+ ln

( c2

δ

)]
,

then with probability at least 1 − δ, all h ∈ H satisfy |errS(h)− errD(h)| ≤ ε.

For example, if H is a deep-network architecture with s tunable weights that are 32-
bit floating point numbers, then log |H| = O(s). Interestingly, deep networks tend
to generalize even when given much less data than in the above bound, and trying
to give mathematical guarantees for this is a major direction of current research.

2. Gaussian Random Variables. [5+5+5]
Prove the following very useful facts about Gaussian random variables:

(a) Let u, v ∈ Rn be two vectors. Let g ∈ Rn be a random vector such that each
coordinate gi of g is distributed as a Gaussian random variable with mean 0
and variance 1, and any two coordinates gi, gj (for i ̸= j) are independent. Then
show that

E
g
[⟨u, g⟩ · ⟨v, g⟩] = ⟨u, v⟩ .

(b) Let g be a Gaussian random variable with mean 0 and variance 1. Show that for
any t ∈ R, we have

E
[
etg] = et2/2 .

Comparing coefficients of t2k on both sides, use this to show that for any k ∈ N,

E
[

g2k
]

=
(2k)!
2k · k!

.

(c) Let g1, g2, g3 and g4 be (not necessarily independent) Gaussian random variables
with mean 0. Additionally, assume that for all coefficients α1, . . . , α4 ∈ R, the lin-
ear combination α1g1 + · · ·+ α4g4 is also a Gaussian random variable (note that
you were asked to prove this in class for independent Gaussian random variables,
and this property is not always true if g1, . . . , g4 are not independent. But here
we are restricting ourselves to g1, . . . , g4 which satisfy this assumption).
Consider the function Eg1,g2,g3,g4

[
et1g1+t2g2+t3g3+t4g4

]
in the variables t1, t2, t3, t4

and use it to show that

E [g1g2g3g4] = E [g1g2] · E [g3g4] + E [g1g3] · E [g2g4] + E [g1g4] · E [g2g3] .

This shows that for any four Gaussian random variables, the expectation of their
product can be expressed in terms of their pairwise correlations! This is a special
case of what is known as Wick’s theorem, which can also be proved by the above
method.
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3. Supremum of Gaussians. [5+5]

(a) Let g ∼ N(0, 1) be a Gaussian random variable with mean 0 and variance 1.
Show that for t ≥ 1

P [g ≥ t] =
∫ ∞

t

1√
2π

· e−x2/2 dx ≤ e−t2/2 .

(b) Let g1, . . . , gn ∼ N(0, 1) be independent Gaussian random variables. Show that

E

[
max
i∈[n]

|gi|
]

≤ 4
√

ln n .

You may use the fact that for a non-negative random variable Z, the expectation
can be computed as E [Z] =

∫ ∞
0 P [Z ≥ t] dt.
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