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1 Singular Value Decomposition for matrices

Using the previous discussion, we can write matrices in convenient form. Let A ∈ Cm×n,
which can be thought of as an operator from Cn to Cm. Let σ1, . . . , σr be the non-zero singu-
lar values and let v1, . . . , vr and w1, . . . , wr be the right and left singular vectors respectively.
Note that V = Cn and W = Cm and v ∈ V, w ∈ W, we can write the operator |w〉 〈v| as the
matrix wv∗, there v∗ denotes vT. This is because for any u ∈ V, wv∗u = w(v∗u) = 〈v, u〉 ·w.
Thus, we can write

A =
r

∑
i=1

σi · wiv∗i .

Let W ∈ Cm×r be a matrix with w1, . . . , wr as columns, such that ith column equals wi.
Similarly, let V ∈ Cn×r be a matrix with v1, . . . , vr as the columns. Let Σ ∈ Cr×r be a
diagonal matrix with Σii = σi. Then, check that the above expression for A can also be
written as

A = WΣV∗ ,

where V∗ = VT as before.

We can also complete the bases {v1, . . . , vr} and {w1, . . . , wr} to bases for Cn and Cm re-
spectively and write the above in terms of unitary matrices.

Definition 1.1 A matrix U ∈ Cn×n is known as a unitary matrix if the columns of U form an
orthonormal basis for Cn.

Proposition 1.2 Let U ∈ Cn×n be a unitary matrix. Then UU∗ = U∗U = id, where id denotes
the identity matrix.

Let {v1, . . . , vn} be a completion of {v1, . . . , vr} to an orthonormal basis of Cn, and let Vn ∈
Cn×n be a unitary matrix with {v1, . . . , vn} as columns. Similarly, let Wm ∈ Cm×m be a
unitary matrix with a completion of {w1, . . . , wr} as columns. Let Σ′ ∈ Cm×n be a matrix
with Σ′

ii = σi if i ≤ r, and all other entries equal to zero. Then, we can also write

A = WmΣ′V∗
n .

1



2 Low-rank approximation for matrices

Given a matrix A ∈ Cm×n, we want to find a matrix B of rank at most k which “approxi-
mates” A. For now we will consider the notion of approximation in spectral norm i.e., we
want to minimize ‖A − B‖2, where

‖(A − B)‖2 = max
v ∕=0

‖(A − B)v‖2
‖v‖2

.

Here, ‖v‖2 =
!
〈v, v〉 denotes the norm defined by the standard inner product on Cn.

The 2 in the notation ‖·‖2 comes from the express from the expression we get by ex-
pressing v in the orthonormal basis of the coordinate vectors. If v = (c1, . . . , cn)T, then

‖v‖2 =
"

∑n
i=1 |ci|2

#1/2
which is simply the Euclidean norm we are familiar with 1. Note

that while the norm here seems to be defined in terms of the coefficients, which indeed
depend on the choice of the orthonormal basis, the value of the norm is in fact

!
〈v, v〉

which is just a function of the vector itself and not of the basis we are working with. The basis and
the coefficients merely provide a convenient way of computing the norm.

SVD also gives the optimal solution for another notion of approximation: minimizing the
Frobenius norm ‖A − B‖F, which equals (∑ij(Aij − Bij)

2)1/2. We will see this later. Let
A = ∑r

i=1 wiv∗i be the singular value decomposition of A and let σ1 ≥ · · · ≥ σr > 0. If k ≥ r,
we can simply use B = A since rank(A) = r. If k < r, we claim that Ak = ∑k

i=1 σiwiv∗i is
the optimal solution. If is easy to check the following.

Proposition 2.1 ‖A − Ak‖2 = σk+1.

Proof: Complete v1, . . . , vk to an orthonormal basis v1, . . . , vn for Cn. Given any v ∈ Cn,
we can uniquely express it as ∑n

i=1 ci · vi for appropriate coefficients c1, . . . , cn. Thus, we
have

(A− Ak)v =

$
r

∑
j=k+1

σj · wjvj∗
%$

n

∑
i=1

ci · vi

%
=

r

∑
j=k+1

n

∑
i=1

ciσj ·
&
vj, vi

'
·wj =

r

∑
j=k+1

cjσj ·wj ,

where the last equality uses the orthonormality of {v1, . . . , vn}. We can also complete
w1, . . . , wr to an orthonormal basis w1, . . . , wm for Cm. Since (A − Ak) is already expressed
in this basis above, we get that

‖(A − Ak)v‖2
2 =

(((((

r

∑
j=k+1

cjσj · wj

(((((

2

2

=

)
r

∑
j=k+1

cjσj · wj,
r

∑
j=k+1

cjσj · wj

*
=

r

∑
j=k+1

++cj
++2 · σ2

j .

1In general, one can consider the norm ‖v‖p :=
!
∑n

i=1 |ci|p
"1/p for any p ≥ 1. While these are indeed valid

notions of distance satisfying a triangle inequality for any p ≥ 1, they do not arise as a square root of an inner
product when p ∕= 2.
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Finally, as in the computation with Rayleigh quotients, we have that for any v ∕= 0 ex-
pressed as v = ∑n

i=1 ci · vi,

‖(A − Ak)v‖2
2

‖v‖2
2

=
∑r

j=k+1

++cj
++2 · σ2

j

∑n
i=1 |ci|2

≤
∑r

j=k+1

++cj
++2 · σ2

k+1

∑n
i=1 |ci|2

≤ σ2
k+1 .

This gives that ‖A − Ak‖2 ≤ σk+1. Check that it is in fact equal to σk+1 (why?)

In fact the proof above actually shows the following:

Exercise 2.2 Let M ∈ Cm×n be any matrix with singular values σ1 ≥ · · · σr > 0. Then, ‖M‖2 =
σ1 i.e., the spectral norm of a matrix is actually equal to its largest singular value.

Thus, we know that the error of the best approximation B is at most σk+1. To show the
lower bound, we need the following fact.

Exercise 2.3 Let V be a finite-dimensional vector space and let S1, S2 be subspaces of V. Then,
S1 ∩ S2 is also a subspace and satisfies

dim(S1 ∩ S2) ≥ dim(S1) + dim(S2)− dim(V) .

We can now show the following.

Proposition 2.4 Let B ∈ Cm×n have rank(B) ≤ k and let k < r. Then ‖A − B‖2 ≥ σk+1.

Proof: By rank-nullity theorem dim(ker(B)) ≥ n − k. Thus, by the fact above

dim (ker(B) ∩ Span (v1, . . . , vk+1)) ≥ (n − k) + (k + 1)− n ≥ 1 .

Thus, there exists a z ∈ ker(B) ∩ Span (v1, . . . , vk+1) \ {0}. Then,

‖(A − B)z‖2
2 = ‖Az‖2

2 = 〈z, A∗Az〉 = RA∗A(z) · ‖z‖2
2

≥
,

min
y∈Span(v1,...,vk+1)\{0}

RA∗A(y)
-
· ‖z‖2

2

≥ σ2
k+1 · ‖z‖2

2 .

Thus, there exists a z ∕= 0 such that ‖(A − B)z‖2 ≥ σk+1 · ‖z‖2, which implies ‖A − B‖2 ≥
σk+1.
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