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1 The Probabilistic Method: Independent Sets

Let us consider one more application of the Probabilistic Method, which is a powerful tool
show the existence of objects with certain properties without necessarily constructing them.
In the previous lecture we used probabilistic reasoning to show that there exists an assign-
ment to a 3-SAT formula with m clauses satisfying 7m/8 clauses, and then also gave an
algorithm to find such an assignment. We will now use the method to show the existence
of large independent sets in graphs.

Consider a graph G = (V, E). A set S ⊆ V is said to be an independent set if no edge lies
completely within the set S. That is, ∀e = {i, j}, either i /∈ S or j /∈ S. We are interested in
finding a large independent set.

Let N(i) denote the set of all neighbors of i i.e., N(i) = {j | {i, j}} ∈ E and let deg(i) =
|N(i)|. Let us first consider a weaker statement which can be proved without any proba-
bilistic reasoning at all.

Proposition 1.1 Let G = (V, E) be a graph with n vertices and let d be such that deg(i) ≤ d for
all i ∈ [n]. Then there exists an independent set S of size |S| ≥ n

d+1 .

Proof: Start with S = ∅ and consider the vertices of the graph in the order 1, . . . , n. When
considering vertex i, if none of the neighbors of i (vertices in N(i))) are already included in
S, then include i in S. At any step in this process, including a vertex in S removes at most d
vertices from being included later. Since at the end, we finish processing all the n vertices,
we must have |S| ≥ n

d+1 .

The above bound is good in some cases, but the degrees of vertices in the graph might vary
a lot and in particular asking for a uniform bound d which holds for all vertices might be
too lossy (consider a “star” graph with one vertex connected to n − 1 others, and no other
edges). The following result gives a much better bound.

Theorem 1.2 Let G = (V, E) be a graph with n vertices. Then there exists an independent set S
such that

|S| ≥
n

∑
i=1

1
deg(i) + 1

≥ n
maxi{deg(i)}+ 1

.
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The main trick in such kind of problems is to set up the right kind of probabilistic exper-
iment, the analysis is usually quite easy. In this question, we can’t do everything inde-
pendently unlike in some previous questions. Suppose that we do - and hence pursue the
following idea: Put each vi in S with probability p. We can’t guarantee that we would not
pick up both the endpoints of an edge to keep in S. However, this idea can also be made
to work and is very useful in some settings. For now, we will prove the theorem using the
observation that we can run the greedy algorithm starting with a random ordering of the
vertices, instead of the fixed ordering 1, . . . , n. If we have an example where we have a
single high-degree vertex surrounded by low-degree vertices, then in a random ordering
we are much more likely to process one of the low-degree neighbors first (which are all
good for the analysis).

Proof: Pick a random permutation π of the vertices {1, 2, . . . n}. We define the set S as
the set of all vertices which appear before all their neighbors in the ordering given by the
permutation π.

S = {i | π(i) < π(j) ∀j ∈ N(i)} .

This is clearly an independent set since if i ∈ S, then for all j ∈ N(i), we have π(j) > π(i)
and hence j /∈ S. We now analyze the size of this independent set. We have |S| = ∑i Xi,
where

Xi =

!
1 if i ∈ S
0 otherwise

Thus, E [|S|] = ∑i E [Xi]. To compute E [Xi], we notice that a random permutation of [n]
also induces a random ordering of the set {i} ∪ N(i). The probability that i appears before
any of its neighbors in the ordering is 1/(deg(i) + 1). Thus,

E [Xi] =
1

deg(i) + 1
,

which gives

E [|S|] =
n

∑
i=1

1
deg(i) + 1

,

and hence there must exist an independent set S with the above size.

2 Inequalities

We will develop some inequalities which let us bound the probability of a random variable
taking a value very far from its expectation.
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2.1 Markov’s Inequality

This is the most basic inequality we will use. This is useful if the only thing we know about
a random variable is its expectation. It will also be useful to derive other inequalities later.

Lemma 2.1 (Markov’s Inequality) Let Z be non-negative variable. Then,

P [Z ≥ t] ≤ E [Z]
t

. (1)

Proof: We start by considering the event E ≡ {Z ≥ t}. We can then write,

E [Z] = P [E] · E [Z | E] + P [Ec] · E [Z | Ec] .

Using non-negativity of Z, we get

E [Z] ≥ P [E] · E [Z | E] ≥ P [E] · t = P [Z ≥ t] · t ,

which completes the proof.

2.2 Chebyshev’s Inequality

The variance of a random variable X is defined as

Var [X] = E
"
(X − E [X])2# = E

"
X2#− (E [X])2

Also, for two random variables X and Y, we define the covariance as

Cov [X, Y] = E [(X − E [X])(Y − E [Y])] = E [XY]− E [X] · E [Y] .

Lemma 2.2 (Chebyshev’s inequality) Let Z be a random variable and let µ = E [Z]. Then,

P [|Z − µ| ≥ t] ≤ Var [Z]
t2 =

E
"
(Z − µ)2#

t2 . (2)

Proof: Consider the non-negative random variable (Z− µ)2. Applying Markov’s inequal-
ity we have

P [|Z − µ| ≥ t] = P
"
(Z − µ)2 ≥ t2# ≤

E
"
(Z − µ)2#

t2 .
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3 Coin tosses revisited

An unbiased coin is tossed n times. Probability that head shows up in each toss is 1
2 . Let Z

be a random variable for the number of heads that have showed up after n tosses. We also
have random variables X for ith coin toss, where Xi = 1 if head shows up in ith toss and 0
otherwise.

So we have

Z =
n

∑
i=1

Xi and E [Z] =
n

∑
i=1

E [Xi] =
n
2

.

Let us now compare the kind of bounds we get using Markov’s and Chebyshev’s inequal-
ities.

3.1 Application of Markov’s inequality

Using Markov’s inequality we have,

P

$
Z ≥ 3n

4

%
≤ E [Z]

(3n/4)
⇒ P

$
Z ≥ 3n

4

%
≤ 2

3
⇒ P

&
Z − n

2
≥ n

4

'
≤ 2

3
.

3.2 Application of Chebyshev’s inequality

We want to show that Chebyshev’s inequality gives a stronger bound on probability. For
this we need to calculate the variance of Z. We do this calculation below in a way that
applies in many other situations as well. We have

Var [Z] = E
"
Z2#− (E [Z])2 .

We observe that

E
"
Z2# = E

(

)
*

n

∑
i=1

Xi

+2
,

- = E

.

∑
i,j

XiXj

/
= ∑

i,j
E
"
XiXj

#
.

Similarly,

(E [Z])2 =

*
E

.*
n

∑
i=1

Xi

+/+2

= ∑
i,j

E [Xi]E
"
Xj

#
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So we have

Var [Z] = ∑
i,j

E
"
XiXj

#
− ∑

i,j
E [Xi]E

"
Xj

#

= ∑
i
(E

"
X2

i
#
− (E [Xi])

2) + ∑
i ∕=j

(E
"
Xi, Xj

#
− E [Xi]E

"
Xj

#
)

= ∑
i
Var [Xi] + ∑

i ∕=j
Cov

"
Xi, Xj

#
,

where Cov
"
Xi, Xj

#
denotes E

"
Xi · Xj

#
− E [Xi] · E

"
Xj

#
. Since the coin tosses are indepen-

dent, we have E
"
XiXj

#
= E [Xi]E

"
Xj

#
and hence Cov

"
Xi, Xj

#
= 0. This yields,

Var [Z] = ∑
i
Var [Xi] for independent random variables Xi . (3)

Also Var [Xi] = E
"
X2

i
#
− (E [Xi])

2 = p − p2, where p = P [Xi = 1]. Here p = 1
2 , so

Var [Xi] =
1
4 and hence, Var [Z] = n

4 . Applying Chebyshev’s inequality we have,

P
&000Z − n

2

000 ≥ t
'

≤ n
4t2 .

Setting t = n/4 and t =
√

n, gives the following bounds

P
&000Z − n

2

000 ≥
n
4

'
≤ 4

n
and P

&000Z − n
2

000 ≥
√

n
'

≤ 1
4

Thus, Chebyshev’s inequality gives a much stronger bound on a deviation of n/4 from
the mean, and can also bound the probability of deviations as small as

√
n. In particular, it

gives a non-trivial bound whenever the deviation is larger than
1

Var [Z], a quantity which
is referred to as the standard deviation of the random variable Z.

4 Threshold Phenomena in Random Graphs

We consider a model of Random Graphs by Erdős and Rényi [ER60]. To generate a random
graph with n vertices, for every pair of vertices {i, j}, we put an edge independently with
probability p. This model is denoted by Gn,p.

Let G be a random Gn,p graph and let H be any fixed graph (on some constant number of
vertices independent of n). We will be interested in understanding the probability that G
contains a copy of H. We start by computing this when H is K4, the clique on 4 vertices.

Definition 4.1 We define k-clique to be a fully connected graph with k vertices.
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Figure 1: 4-Clique

As a convention, we will count a permutation of a copy of K4 as the same copy. We define
the random variable

Z = number of copies of K4 in G = ∑
C

XC ,

where C ranges over all subsets of V of size 4 and the random variable XC is defined as

XC =

!
1 if all pair of vertices in the set C have an edge in between them
0 otherwise

.

We have E [XC] = p6, since the probability of connecting all 4 vertices (using 6 edges) in
the 4-tuple is p6. So we have the expectation of Z :

E [Z] = ∑
C

E [XC] =

2
n
4

3
· p6

We observe that

E [Z] → 0 when p ≪ n−2/3 and E [Z] → ∞ when p ≫ n−2/3 .

Here, by p ≪ n−2/3, we mean that limn→∞(p/n−2/3) = 0 and p ≫ n−2/3 is defined
similarly. We will prove that there is in fact a threshold phenomenon in the probability
that G contains a copy of K4. When p ≪ n−2/3, the probability that a random graph G
generated according to model Gn,p contains a copy of K4, goes to 0 as n → ∞. On the other
hand, when p ≫ n−2/3, this probability tends to 1.

Theorem 4.2 Let G be generated randomly according to the model Gn,p graph. We have that:

- If p ≪ n−2/3, then P [G contains a copy of K4] → 0 as n → ∞.

- If p ≫ n−2/3, then P [G contains a copy of K4] → 1 as n → ∞.

Proof: As above, we define the random variable Z,

Z = number of copies of K4 in G = ∑
C

XC .
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The case when p ≪ n−2/3 can be easily handled by Markov’s inequality. We get that,

P [Z > 0] = P [Z ≥ 1] ≤ E [Z]
1

.

Since E [Z] → 0 as n → ∞ when p ≪ n−2/3, we get that P [G contains a copy of K4] → 0.

When p ≫ n−2/3, we want to show that P [Z > 0] → 1, i.e., P [Z = 0] → 0. We use
Chebyshev’s inequality to prove this. We first compute the variance of Z.

Var [Z] = Var

.

∑
C

XC

/
= ∑

C
Var [XC] + ∑

C ∕=D
Cov [XC, XD]

Since E [XC] = p6, we have Var [XC] = p6 − p12. Also, for two distinct sets C and D, we
consider four different cases depending on the number of vertices they share.

- Case 1: |C ∩ D| = 0. Since no vertex is shared, XC and XD are independent and
hence Cov [XC, XD] = 0.

- Case 2: |C ∩ D| = 1. Since the variables XC and XD depend on pairs of vertices in the
sets C and D, and the two sets do not share any pair, we still have Cov [XC, XD] = 0.

- Case 3: |C ∩ D| = 2. Since C and D share a pair of vertices, there are 11 pairs which
must all have edges between them in G, for both XC and XD to be 1. Thus, we have
E [XCXD] = p11 and

Cov [XC, XD] = E [XCXD]− E [XC] · E [XD] = p11 − p12 .

- Case 4: |C ∩ D| = 3. in this case C and D share 3 pairs and thus there are 9 distinct
pairs of vertices which must all have edges between them for both XC and XD to be
1. Thus,

Cov [XC, XD] = E [XCXD]− E [XC] · E [XD] = p9 − p12 .

Also, there are (n
6) · (

6
4) pairs C and D such that |C ∩ D| = 2, and (n

5) · (
5
4) pairs such that

|C ∩ D| = 3. Combining the above cases we have,

Var [Z] = ∑
C
Var [XC] + ∑

C ∕=D
Cov [XC, XD]

=

2
n
4

3
· p6(1 − p6) +

2
n
6

3
·
2

6
4

3
· (p11 − p12) +

2
n
5

3
·
2

5
4

3
· (p9 − p12)

= O(n4 p6) + O(n6 p11) + O(n5 p9) .
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Applying Chebyshev’s inequality gives

P [Z = 0] ≤ P [|Z − E [Z]| ≥ E [Z]] ≤ Var [Z]
(E [Z])2

=
1

(n
4)

2 · p12
·
4

O(n4 p6) + O(n6 p11) + O(n5 p9)
5

= O
2

1
n4 p6

3
+ O

2
1

n2 p

3
+ O

2
1

n3 p3

3
.

For p ≫ n−2/3, all the terms on the right tend to 0 as n → ∞. Hence, P [Z = 0] → 0 as
n → ∞.

The above analysis can be extended to any graph H of a fixed size. Let ZH be the number
of copies of H in a random graph G generated according to Gn,p. Using the previous anal-

ysis, we have E [ZH ] = Θ
4

n|V(H)| · p|E(H)|
5

. Hence, E [Z] → 0 when p ≪ n−|V(H)|/|E(H)|

and E [Z] → ∞ when p ≫ n−|V(H)|/|E(H)|. Thus, it might be tempting to conclude that
p = n−|V(H)|/|E(H)| is the threshold probability for finding a copy of H. However, con-

1

2

4

3

5

Figure 2: Subgraph H containing K4

sider the graph in Figure 2. For this graph, we have |V(H)|/|E(H)| = 5/7. But for p such
that p ≫ n−5/7 and p ≪ n−2/3, a random G is extremely unlikely to contain a copy of K4
and thus also extremely unlikely to contain a copy of H. For an arbitrary graph H, it was
shown by Bollobás [Bol81] that the threshold probability is n−λ, where

λ = min
H′⊆H

|V(H′)|
|E(H′)| .
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