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1 Applications of SVD: least squares approximation

We discuss another application of singular value decomposition (SVD) of matrices. Let
ai,...,a, € R be points which we want to fit to a low-dimensional subspace. The goal
is to find a subspace S of R? of dimension at most k to minimize Y ; (dist(a;, S))Z, where
dist(a;, S) denotes the distance of a; from the closest point in S. We first prove the follow-

ing.
Claim 1.1 Let uy, ..., uy be an orthonormal basis for S. Then
k

(dist(a;,$))* = [lail3 — Y (a;,u;)* .

j=1

Thus, the goal is to find a set of k orthonormal vectors uj, ..., u; to maximize the quantity
Yo ):;":1 (aj, u]->2. Let A € R™ be a matrix with the i row equal to a!. Then, we need

to find orthonormal vectors u, . .., 1y to maximize ||Auy H% +-+ HAukH%. We will prove
the following.

Proposition 1.2 Let vy, ..., v, be the right singular vectors of A corresponding to singular values
o1 > -+ >0y > 0. Then, for all k < r and all orthonormal sets of vectors uy, ..., uy

2 2 2 2
[Au[l3 + -+ [[Auelly < [[Aor][y +- -+ [[Avk];

Thus, the optimal solution is to take S = Span (vy, ..., v;). We prove the above by induc-
tion on k. For k = 1, we note that

2 2
Jaulp = (ATAm,m) < max Ruafe) = of = 4ol

To prove the induction step for a given k < r, define
Vi, = {v R | (v,0)) =0 Vi € [k—l]} .

First prove the following claim.



Claim 1.3 Given an orthonormal set uy, ..., uy, there exist orthonormal vectors uf, ..., u;( such
that

-up e Vh L

- Span (u1,...,ux) = Span (u},..., u}).

2 2 2 2
- Ay + -+ [Auly; = [JAu]l; + -+ [[Aug]];

Proof: We only provide a sketch of the proof here. Let S = Span ({u1, ..., ux}). Note that
dim (Vi) =d — k+1 (why?) and dim(S) = k. Thus,

dim(vkilms) > k+(d—k+1)—d = 1.

Hence, there exists u}, € Vi, NS with ||u}|| = 1. Completing this to an orthonormal basis
of S gives orthonormal w7, ...,u; with the first and second properties. We claim that this
already implies the third property (why?). [ ]

Thus, we can assume without loss of generality that the given vectors uy, ..., 1y are such
that u € V;-,. Hence,

2 2 2
lAugll; < max [|Av]; = of = |Avl; -
UEVk71
[[oll=1

Also, by the inductive hypothesis, we have that

2 2 2 2
[Aully + -+ [[Auweall; < [[Aoi]; + -+ | Aveallz

which completes the proof. The above proof can also be used to prove that SVD gives the
best rank k approximation to the matrix A in Frobenius norm. We will see this in the next
homework.

2 Bounding the eigenvalues: Gershgorin Disc Theorem

We will now see a simple but extremely useful bound on the eigenvalues of a matrix, given
by the Gershgorin disc theorem. Many useful variants of this bound can also be derived
from the observation that for any invertible matrix S, the matrices S~1MS and M have the
same eigenvalues (prove it!).



Theorem 2.1 (Gershgorin Disc Theorem) Let M € C"*". Let R; = }.; |Mj;|. Define the
set
Disc(M;;, R;) == {z]|z€C,|x — M| <R;}.

If A is an eigenvalue of M, then
n
A € |JDisc(Mj;, Ry).

i=1

Proof: Let x € C" be an eigenvector corresponding to the eigenvalue A. Let iy =
argmax;e(,) {|x;|}. Since x is an eigenvector, we have

n
Mx=Ax = Vien] Y Mz = Ax;.
=1

In particular, we have that for i = iy,

ioip *

n n X x

_ , s e B
ZMiojxj = /\JCZ0 = ZMWX, = A = ZMZOJx, = A-M
j=1 j=1 Io j#io io

Thus, we have

A= M| <Y [Miyl-
J#io

< ) IMiy| = Ry

X
Xi j#io
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