Practice Problems for Section 3

October 12, 2016

1) Consider the vector space $V = \{f \in C^{\infty}[0,1] : f(0) = f(1)\}$ over \mathbb{R} with inner product $\langle f, g \rangle = \int_0^1 f(x)g(x)dx$. What is the adjoint of the derivative operator $\varphi(f) = \frac{df}{dx}$?

2) Consider the vector space $M = \{\text{symmetric } n \times n \text{ real matrices}\}$ over \mathbb{R} . For any $A \in M$ let $\lambda_1(A)$ be the largest eigenvalue of A in absolute value. Is $\langle A, B \rangle = |\lambda_1(A)| |\lambda_1(B)|$ a valid inner product on M?

3) Let V be a finite-dimensional inner product space over \mathbb{R} , and let $\varphi : V \to V$ be a linear operator with adjoint φ^* . Prove that $\operatorname{rank}(\varphi) = \operatorname{rank}(\varphi^*)$.