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1 Solving sparse systems of linear equations

The methods we discuss here will require analyzing distances and inner products, and
thus we will work with matrices with real entries (though everything we say will extend
easily to complex matrices).

Given A ∈ Rm×n, if we have a representation of the non-zero entries of A in “list form” i.e.,
a list of the non-zero entries in each row, then the for any vector v, if the matrix has a total
of N non-zero entries, then for any vector v, the product Av can be computed using O(N)
arithmetic operations. We will keep this as our base cost and try to compute a solution to
Ax = b using as few matrix-vector multiplications as possible.

For the purposes of the discussion below, we will assume that A ∈ Rn×n is a symmetric,
positive-definite matrix. This assumption is not as restrictive as it sounds, and in particular
is no more restrictive than assuming that A is invertible. Given a system A0x = b0, we can
always multiply both sides by AT

0 and obtain AT
0 A0x = AT

0 b0, where the matrix AT
0 A0 is

now positive-definite (if A0 is invertible). Note that AT
0 A0 may not be sparse, but we can

still compute AT
0 A0v in O(N) operations for any vector v using only O(N) operations (we

will also need the list of non-zero entries in every column for this). Taking A = AT
0 A0 and

b = AT
0 b0 satisfies the required assumptions.

1.1 Steepest descent

Given a system Ax = b with A � 0, we apply a method for minimizing the function

f (x) =
1
2
· 〈Ax, x〉 − 〈b, x〉+ c

for some arbitrary constant c ∈ R. This can be motivated by recalling that we originally
had the system A0x = b0 and Ax = b was obtained by multiplying both sides by AT

0 . If we
consider minimizing the least square distance, we get

‖A0x− b0‖2 = 〈A0x, A0x〉 − 2 〈b0, A0x〉+ ‖b0‖2 = 〈Ax, x〉 − 2 〈b, x〉+ ‖b0‖2 .
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Of course, scaling by a factor of 2 and changing the constant term does not change the
minimizer. If x∗ is the solution to the linear system, we can also re-write the above as

‖A0(x− x∗)‖2 = 〈A(x− x∗), (x− x∗)〉 = 〈x− x∗, x− x∗〉A ,

where 〈x, y〉A denotes the function 〈Ax, y〉.

Exercise 1.1 Let A ∈ Rn×n be a positive definite matrix. Let the function µ : Rn ×Rn → R be
defined as µ(x, y) = 〈Ax, y〉. Check that µ is an inner product. We will use 〈·, ·〉A to this inner
product.

The inner product 〈·, ·〉A and the associated norm are sometimes more convenient for mea-
suring the distance to the solution x∗ since this distance actually measures the least square
error in the “output” A0x rather than the “input” x. We will need this inner product when
working with the conjugate gradient method.

We will use the following algorithm for solving the linear system:

- Start with an arbitrary vector x0.

- At time t, update

xt+1 = xt − η · ∇ f (xt) = η · (Axt − b) .

The method can also be analyzed by choosing an optimal step size ηt at each time t but we
will work with the simpler variant here. Let x∗ be the solution to the system Ax = b. We
note that

xt+1 − x∗ = xt − x∗ − η · A(xt − x∗) = (I − ηA)(xt − x∗) .

By induction,

xt − x∗ = (I − ηA)t(x0 − x∗) ⇒ ‖xt − x∗‖2 ≤ ‖I − ηA‖t
2 ‖x0 − x∗‖2 ,

where we used the fact that if λ is an eigenvalue of M, then λt is an eigenvalue of Mt,
which gives that

∥∥(I − ηA)t
∥∥

2 = ‖I − ηA‖t
2. Thus, if ‖I − ηA‖2 is small, we can reach a

point close to the solution x∗ in a small number of steps. We now choose η to minimize
‖I − ηA‖2. Let 0 < λ1 ≤ · · · ≤ λn denote the eigenvalues of A. Then, the eigenvalues of
I − ηA are 1− ηλ1 ≥ · · · ≥ 1− ηλn. Thus, we have

‖I − ηA‖2 = max {|1− ηλ1| , |1− ηλn|} .

Check that this is minimized for λ = 2
λ1+λn

. Plugging this, we get that

‖I − ηA‖2 = 1− 2
λn
λ1

+ 1
= 1− 2

κ + 1
.
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Here κ = λn/λ1 is known as the condition number of the matrix A. Using this, we get that
‖xt − x∗‖ ≤ ε ‖x0 − x∗‖ after O(κ log(1/ε)) iterations. Notice that the cost of each iteration
is just O(1) matrix-vector multiplications.

Exercise 1.2 Obtain a similar bound for the distance ‖xt − x∗‖A defined as
√
〈(x− x∗), (x− x∗)〉A.

In the next lecture, we will discuss the conjugate gradient method, which can obtain a
similar guarantee in O(

√
κ log(1/ε)) iterations.
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