Mathematical Toolkit

Lecture 3: October 4, 2016

Lecturer: Madhur Tulsiani

1 Linear Transformations

Definition 1.1 Let V and W be vector spaces over the same field \mathbb{F} . A map $\varphi : V \to W$ is called a linear transformation *if*

- $\varphi(v_1 + v_2) = \varphi(v_1) + \varphi(v_2) \quad \forall v_1, v_2 \in V.$

-
$$\varphi(c \cdot v) = c \cdot \varphi(v) \quad \forall v \in V$$

Example 1.2 *The following are all linear transformations:*

- A matrix $A \in \mathbb{R}^{m \times n}$ defines a linear transformation from \mathbb{R}^n to \mathbb{R}^m .
- φ : $C([0,1],\mathbb{R}) \to C([0,2],\mathbb{R})$ defined by $\varphi(f)(x) = f(x/2)$.
- $\varphi : C([0,1],\mathbb{R}) \to C([0,1],\mathbb{R})$ defined by $\varphi(f)(x) = f(x^2)$.
- φ : $C([0,1],\mathbb{R}) \to C([0,1],\mathbb{R})$ defined by $\varphi(f)(x) = f(1-x)$.
- $\varphi_{\text{left}} : \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$ defined by $\varphi_{\text{left}}(f)(n) = f(n+1)$.
- *The derivative operator acting on* $\mathbb{R}[x]$ *.*

Proposition 1.3 Let V, W be vector spaces over \mathbb{F} and let B be a basis for V. Let $\alpha : B \to W$ be an arbitrary map. Then there exists a unique linear transformation $\varphi : V \to W$ satisfying $\varphi(v) = \alpha(v) \forall v \in B$.

Definition 1.4 Let $\varphi : V \to W$ be a linear transformation. We define its kernel and image as:

- $\ker(\varphi) := \{ v \in V \mid \varphi(v) = 0_W \}.$
- $\operatorname{im}(\varphi) = \{\varphi(v) \mid v \in V\}.$

Proposition 1.5 ker(φ) *is a subspace of V and* im(φ) *is a subspace of W.*

Autumn 2016

Proposition 1.6 (rank-nullity theorem) *If V is a finite dimesional vector space and* $\varphi : V \to W$ *is a linear transformation, then*

$$\dim(\ker(\varphi)) + \dim(\operatorname{im}(\varphi)) = \dim(V).$$

 $\dim(\operatorname{im}(\varphi))$ is called the rank and $\dim(\ker(\varphi))$ is called the nullity of φ .

Example 1.7 Consider the matrix A which defines a linear transformation from \mathbb{F}_2^7 to \mathbb{F}_2^3 :

$$A = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

- dim $(im(\varphi)) = 3$.
- dim $(\ker(\varphi)) = 4$.
- Check that $ker(\varphi)$ is a code which can recover from one bit of error.
- Check that this is also true for the $(2^k 1) \times k$ matrix A_k where the *i*th column is the number *i* written in binary (with the most significant bit at the top).

This code is known as the Hamming Code and the matrix A is called the parity-check matrix of the code.

2 Eigenvalues and eigenvectors

Definition 2.1 Let V be a vector space over the field \mathbb{F} and let $\varphi : V \to V$ be a linear transformation. $\lambda \in \mathbb{F}$ is said to be an eigenvalue of φ if there exists $v \in V \setminus \{0_V\}$ such that $\varphi(v) = \lambda \cdot v$. Such a vector v is called an eigenvector corresponding to the eigenvalue λ . The set of eigenvalues of φ is called its spectrum:

 $\operatorname{spec}(\varphi) = \{\lambda \mid \lambda \text{ is an eigenvalue of } \varphi\}.$

Example 2.2 Consider the following transformations:

- Differentiation is a linear transformation on the class of infinitely differentiable functions and each function of the form $c \cdot \exp(\lambda x)$ is an eigenvector with eigenvalue λ .
- Consider the transformation $\varphi_{\text{left}} : \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$. Any geometric progression with common ratio *r* is an eigenvector of φ_{left} with eigenvalue *r* (and these are the only eigenvectors for this transformation).

Proposition 2.3 Let $U_{\lambda} = \{v \in V \mid \varphi(v) = \lambda \cdot v\}$. Then for each $\lambda \in \mathbb{F}$, U_{λ} is a subspace of V.

Note that $U_{\lambda} = \{0_V\}$ if λ is not an eigenvalue. The dimension of this subspace is called the geometric multiplicity of the eigenvalue λ .

Proposition 2.4 Let $\lambda_1, \ldots, \lambda_k$ be distinct eigenvalues of φ with associated eigenvectors v_1, \ldots, v_k . Then the set $\{v_1, \ldots, v_k\}$ is linearly independent.

Definition 2.5 A transformation $\varphi : V \to V$ is said to be diagonalizable if there exists a basis of *V* comprising of eigenvectors of φ .

Exercise 2.6 Recall that Fib = { $f \in \mathbb{R}^{\mathbb{N}} | f(n) = f(n-1) + f(n-2) \forall n \ge 2$ }. Show that φ_{left} : Fib \rightarrow Fib is diagonalizable. Express the sequence by f(0) = 1, f(1) = 1 and $f(n) = f(n-1) + f(n-2) \forall n \ge 2$ (known as Fibonacci numbers) as a linear combination of eigenvectors of φ_{left} .