Mathematical Toolkit Autumn 2016

Lecture 3: October 4, 2016

Lecturer: Madhur Tulsiani

1 Linear Transformations

Definition 1.1 Let V and W be vector spaces over the same field \mathbb{F} . A map $\varphi : V \to W$ is called a linear transformation *if*

$$
-\varphi(v_1 + v_2) = \varphi(v_1) + \varphi(v_2) \quad \forall v_1, v_2 \in V.
$$

$$
-\varphi(c \cdot v) = c \cdot \varphi(v) \quad \forall v \in V.
$$

Example 1.2 *The following are all linear transformations:*

- *− A* matrix $A \in \mathbb{R}^{m \times n}$ defines a linear transformation from \mathbb{R}^n to \mathbb{R}^m *.*
- ϕ *: C*([0, 1], **R**) → *C*([0, 2], **R**) *defined by* ϕ (*f*)(*x*) = *f*(*x*/2)*.*
- *−* φ : *C*([0, 1], **R**) → *C*([0, 1], **R**) *defined by* $\varphi(f)(x) = f(x^2)$ *.*
- ϕ *: C*([0, 1], **R**) → *C*([0, 1], **R**) *defined by* $\phi(f)(x) = f(1 x)$ *.*
- *-* φ_{left} : $\mathbb{R}^N \to \mathbb{R}^N$ *defined by* $\varphi_{\text{left}}(f)(n) = f(n+1)$ *.*
- *- The derivative operator acting on* **R**[*x*]*.*

Proposition 1.3 *Let V*, *W be vector spaces over* **F** *and let B be a basis for V*. *Let* $\alpha : B \to W$ *be an arbitrary map. Then there exists a unique linear transformation ϕ* : *V* → *W satisfying* $\varphi(v) = \alpha(v) \,\forall v \in B.$

Definition 1.4 *Let* $\varphi : V \to W$ *be a linear transformation. We define its kernel and image as:*

- *-* ker(φ) := { $v \in V | \varphi(v) = 0$ _{*W*}}.
- *-* $\text{im}(\varphi) = {\varphi(v) | v \in V}.$

Proposition 1.5 ker(φ) *is a subspace of V and* $\text{im}(\varphi)$ *is a subspace of W.*

Proposition 1.6 (rank-nullity theorem) *If V is a finite dimesional vector space and* $\varphi : V \to W$ *is a linear transformation, then*

$$
\dim(\ker(\varphi)) + \dim(\text{im}(\varphi)) = \dim(V).
$$

 $dim(im(\varphi))$ is called the rank and $dim(ker(\varphi))$ is called the nullity of φ .

Example 1.7 *Consider the matrix A which defines a linear transformation from* \mathbb{F}_2^7 to \mathbb{F}_2^3 :

$$
A = \left[\begin{array}{rrrrr} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{array} \right].
$$

- *-* dim(im(φ)) = 3.
- *-* dim(ker(φ)) = 4*.*
- *- Check that* ker(*ϕ*) *is a* code *which can recover from one bit of error.*
- *- Check that this is also true for the* (2 *^k* − 1) × *k matrix A^k where the ith column is the number i written in binary (with the most significant bit at the top).*

This code is known as the Hamming Code and the matrix A is called the parity-check matrix of the code.

2 Eigenvalues and eigenvectors

Definition 2.1 Let V be a vector space over the field **F** and let $\varphi : V \to V$ be a linear transforma*tion.* $\lambda \in \mathbb{F}$ *is said to be an* eigenvalue *of* φ *if there exists* $v \in V \setminus \{0_V\}$ *such that* $\varphi(v) = \lambda \cdot v$. *Such a vector v is called an* eigenvector *corresponding to the eigenvalue λ. The set of eigenvalues of ϕ is called its* spectrum*:*

 $spec(\varphi) = {\lambda \mid \lambda \text{ is an eigenvalue of } \varphi}$.

Example 2.2 *Consider the following transformations:*

- *- Differentiation is a linear transformation on the class of infinitely differentiable functions and each function of the form c* \cdot $exp(\lambda x)$ *is an eigenvector with eigenvalue* λ *.*
- *- Consider the transformation ϕ*left : **R^N** → **RN***. Any geometric progression with common ratio r is an eigenvector of ϕ*left *with eigenvalue r (and these are the only eigenvectors for this transformation).*

Proposition 2.3 *Let* $U_{\lambda} = \{v \in V \mid \varphi(v) = \lambda \cdot v\}$ *. Then for each* $\lambda \in \mathbb{F}$ *,* U_{λ} *is a subspace of V.*

Note that $U_\lambda = \{0_V\}$ if λ is not an eigenvalue. The dimension of this subspace is called the geometric multiplicity of the eigenvalue λ .

Proposition 2.4 Let $\lambda_1,\ldots,\lambda_k$ be distinct eigenvalues of φ with associated eigenvectors v_1,\ldots,v_k . *Then the set* $\{v_1, \ldots, v_k\}$ *is linearly independent.*

Definition 2.5 *A transformation* $\varphi: V \to V$ *is said to be diagonalizable if there exists a basis of V comprising of eigenvectors of ϕ.*

Exercise 2.6 Recall that $\text{Fib} = \{f \in \mathbb{R}^{\mathbb{N}} \mid f(n) = f(n-1) + f(n-2) \forall n \geq 2\}$. Show that φ _{left} : Fib \rightarrow Fib *is diagonalizable. Express the sequence by* $f(0) = 1, f(1) = 1$ *and* $f(n) = 1$ *f*(*n* − 1) + *f*(*n* − 2) ∀*n* ≥ 2 *(known as Fibonacci numbers) as a linear combination of eigenvectors* of φ _{left}.