
Mathematical Toolkit Autumn 2016

Homework 3
Due: November 22, 2016

Note: You may discuss these problems in groups. However, you must write up your own solutions
and mention the names of the people in your group. Also, please do mention any books, papers or
other sources you refer to. It is recommended that you typeset your solutions in LATEX.

1. Random Polynomials. [2+2+2+4]
For a prime number p, recall that the field Fp has the elements {0, 1, . . . , p− 1}, with
addition and multiplication done modulo p. A degree-d polynomial in the variable
x over the field Fp (for pime p) is defined as:

P(x) = c0 + c1 · x + . . . + cd · xd ,

where the coefficients c0, . . . , cd, and the variable x all take values in Fp (and all ad-
dition and multiplication is done modulo p). A value x ∈ Fp is called a root of P if
P(x) = 0. Consider picking a random polynomial P by selecting c0, . . . , cd randomly
from Fp, and define the random variable

Z = Number of roots of P .

(a) Define an appropriate probability space Ω so that each possible degree-d poly-
nomial P corresponds to an outcome in Ω.

(b) Let a ∈ Fp. For a fixed x ∈ Fp, compute the probability

P [P(x) = a] .

Remember that the probability is over the choice of the polynomial P.

(c) Let Z be as defined above. Calculate E [Z].

(d) Calculate Var [Z].

2. One sided Chebyshev? [8]
Recall that for a real-valued random variable Z with mean µ and variance σ2, Cheby-
shev’s inequality shows that

P [|Z− µ| ≥ c] ≤ σ2

c2 .
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Note that the above bound does not say anything when c ≤ σ. Prove the following
one-sided variant of Chebyshev’s inequality for any real-valued random variable
with mean µ and variance σ2:

P [Z− µ ≥ c] ≤ σ2

c2 + σ2 .

Note that this bound is meaningful even when c ∈ [0, σ].
(Hint: First bound the probability that P [Z + t− µ ≥ c + t].)

3. Dominating sets. [2+2+6]
Given a graph G = (V, E) and a set U ⊆ V, a set S is said to be a dominating set for
U, if for each i ∈ U, S contains i or some neighbor of i.

For a graph G with n vertices, let U be a subset of vertices such that all vertices in U
have degree at least d. Consider picking a random set S1 by including each vertex in
V independently with probability p.

(a) What is E [|S1|]?
(b) For a fixed vertex i ∈ U, what is the probability that neither i nor any of its

neighbors are included in S1?

(c) Use the above to show that there exists a dominating set for U of size at most
n ·
(

1+ln(d+1)
(d+1)

)
.

4. Approximating continuous functions. [3+2+3+2+2]
In this exercise, we will prove Weierstrass’s approximation theorem, which says that
every continous function on [0, 1] can be approximated to any desired degree of accu-
racy, using a polynomial of high enought degree. Here we outline Bernstein’s proof
of the theorem using probabilistic methods.

Let f : [0, 1] → R be a uniformly continuous function i.e., ∀ε > 0, there exists a δ > 0
such that

∀x, y ∈ [0, 1] |x− y| < δ ⇒ | f (x)− f (y)| < ε .

We will show that for any desired ε > 0, we can find a polynomial p such that
∀x ∈ [0, 1], | f (x)− p(x)| ≤ ε. We will prove this by approximating the given input
x by an average of n coin tosses, where each coin comes up heads (equals 1) with
probability x. Formally, let

Z = X1 + · · ·+ Xn ,

where each Xi = 1 independently with probability x and 0 otherwise.

(a) Calculate E
[Z

n

]
and Var

[Z
n

]
.
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(b) Show that for each k ∈ {0, . . . , n}, P [Z = k] can be written as a polynomial in x
of degree at most n.

(c) Consider the expression

p(x) =
n

∑
k=0

P [Z = k] · f
(

k
n

)
= E

[
f
(

Z
n

)]
.

By the previous part, this is a polynomial in the variable x of degree at most n
(the values of f at different points in the expression do not depend on x). Let
δ > 0 be such that ∀x, y ∈ [0, 1], |x− y| < δ ⇒ | f (x)− f (y)| < ε/2. Define the
event

Ex ≡
{∣∣∣∣Zn − x

∣∣∣∣ ≥ δ

}
,

and let M = supx∈[0,1] | f (x)|. Show that for any x ∈ [0, 1]

| f (x)− p(x)| ≤ ε

2
·P [¬Ex] + 2M ·P [Ex] .

(d) Use Chebyshev’s inequality to bound P [Ex] in terms of x, n and δ.

(e) Using the above bound, find the least n such that for all x ∈ [0, 1], P [Ex] ≤ ε
4M .

Note that the above gives a polynomial p of degree at most n such that ∀x ∈ [0, 1],
we have | f (x)− p(x)| < ε.

5. Random 3-SAT. [3 + 3 + 4]
A 3-SAT formula ϕ in n variables {x1, . . . , xn} is written as

ϕ ≡ C1 ∧ · · · ∧ Cm ,

where each Ci is a clause of the form Ci = (li1 ∨ li2 ∨ li3) and each lij is in turn xij or its
negation xij . In this problem, we will choose the formula at random. In fact, we will
fix the structure of the formula and only decide at random wether or not to negate a
variable in a literal.

Let n be the number of variables and let m > n log(n) be the number of clauses we
will choose. Let S1, . . . , Sm ⊆ [n] be distinct sets (fixed in advance) such that |Si| = 3
for each i ∈ [m]. For Si = {i1, i2, i3}, we generate the ith clause in the formula as
follows

- For each j ∈ {1, 2, 3}, independently take lij = xij with probability 1/2 and
lij = xij with probability 1/2.

- Take the clause Ci = (li1 ∨ li2 ∨ li3).
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Different clauses are generated independently of each other. Let ϕ be the (random)
3-SAT formula generated according to this process.

(a) Let A ∈ {0, 1}n be a fixed assignment to the variables i.e., A(xj) ∈ {0, 1} for each
j ∈ [n]. Let ϕ(A) denoted the number of clauses in ϕ satisfied by the assignment
A. Calculate E [ϕ(A)]. Show that this is a fixed number K depending only on m
(but not on n and A).

(b) Let ε > 0 and an assignment A ∈ {0, 1}n be given. Let K be as above. Show that

P [|ϕ(A)− K| ≥ ε ·m]→ 0 as n→ ∞ .

(c) Show that

P [∃A ∈ {0, 1}n. |ϕ(A)− K| ≥ ε ·m]→ 0 as n→ ∞ .

All probabilities and expectations in the above problem are over the choice of the
random formula ϕ.

6. Random incoherent matrices. [2+ 4 + 4]
Recall that in the class we proved that if a matrix A ∈ Rk×n satisfies that∥∥∥A(i)

∥∥∥ = 1 ∀i ∈ [n] and
∣∣∣〈A(i), A(j)

〉∣∣∣ ≤ η ∀i 6= j, i, j ∈ [n] ,

then A satisfies the restricted isometry property with parameters (s, (s− 1) · η). In
this problem we will construct such matrices randomly. Let A ∈ Rk×n be a random
matrix where each entry Aij is chosen independently as

Aij =

{
1/
√

k with probability 1/2
−1/
√

k with probability 1/2

(a) Show that for each column A(i), we have
∥∥∥A(i)

∥∥∥ = 1.

(b) For two columns A(i) and A(j) with i 6= j, show that

P
[∣∣∣〈A(i), A(j)

〉∣∣∣ ≥ η
]
≤ 2 · exp

(
−η2k/6

)
(c) Show that for k ≥ 18 · ln(n)/η2, we have that the random matrix A satisfies the

restricted isometry property with parameters (s, (s− 1) · η), with probability at
least 1−O(1/n).
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