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1 Azuma’s inequality

We now prove a concentration inequality for martingale sequences.

Proposition 1.1 (Azuma’s inequality) Let Z0, . . . , Zn be a martingale sequence with respect
to the filter F0 ⊆ F1 ⊆ · · · ⊆ Fn such that for Yi = Zi − Zi−1, we have that for all i ∈ [n],
|Yi| = |Zi − Zi−1| ≤ ci. Then,

P [Zn − Z0 ≥ t] ≤ exp

(
− t2

2 ·
∑n

i=1 c
2
i

)
and P [Z0 − Zn ≥ t] ≤ exp

(
− t2

2 ·
∑n

i=1 c
2
i

)
.

Proof: We first prove one side of the inequality. We get that for any λ > 0

P [Zn − Z0 ≥ t] = P
[
eλ·(Zn−Z0) ≥ eλ·t

]
≤ e−λ·t · E

[
eλ·(Zn−Z0)

]
,

using Markov’s inequality. Splitting the term in the exponent and conditioning on Fn−1, we get

E
[
eλ·(Zn−Z0)

]
= E

[
eλ·(Yn+Zn−1−Z0)

]
= E

[
E
[
eλ·(Yn+Zn−1−Z0) | Fn−1

]]
= E

[
eλ·(Zn−1−Z0) · E

[
eλ·Yn | Fn−1

]]
,

using the fact that Zn−1 and Z0 are both measurable in the σ-algebra Fn−1. We not bound the
expectation E

[
eλ·Yn | Fn−1

]
using convexity of the function ex. Let α ∈ [−1, 1] and M ∈ R be any

real number. Then, we have

α ·M =

(
1 + α

2

)
·M +

(
1− α

2

)
·M .

Thus, using convexity of the function ex, we get that

eα·M ≤
(

1 + α

2

)
· eM +

(
1− α

2

)
· e−M .

Taking α = Yn/cn and M = λ · cn, we get that

eλ·Yn ≤
(

1 + (Yn/cn)

2

)
· eλ·cn +

(
1− (Yn/cn)

2

)
· e−λ·cn .
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Using the fact that E [Yn | Fn−1] = 0, we get that

E
[
eλ·Yn | Fn−1

]
≤ E

[(
1 + (Yn/cn)

2

)
· eλ·cn +

(
1− (Yn/cn)

2

)
· e−λ·cn | Fn−1

]
=

eλ·cn + e−λ·cn

2
≤ e(λ·cn)

2/2 ,

where the last inequality uses the fact that (ex + e−x)/2 ≤ ex
2/2 (which can be verified using the

Taylor expansion). Thus, we get

P [Zn − Z0 ≥ t] ≤ e−λ·t · e(λ2/2)·c2n · E
[
λ·(Zn−1−Z0)

]
.

Continuing by induction, we can deduce

P [Zn − Z0 ≥ t] ≤ exp

(
−λ · t+ (λ2/2) ·

n∑
i=1

c2i

)

Since the above holds for any λ > 0, we can optimize over λ to minimize the above bound. Check
that the above expression is minimized for λ = t∑n

i=1 c
2
i
, which gives

P [Zn − Z0 ≥ t] ≤ exp

(
− t2

2 ·
∑n

i=1 c
2
i

)
.

The bound for P [Z0 − Zn ≥ t] follows similarly.

2 Applications to large-deviation bounds

Many applications of Azuma’s require bounding the deviation from mean of a function f(x1, . . . , xn)
whose inputs are chosen at random. Taking Xi as a random variable, whose value is thought of
at the input xi, we are thus interested in understanding the random variable f(X1, . . . , Xn). We
define the Doob martingale sequence

Zi = E [f | X1, . . . , Xi] .

A particularly useful case is when f does not change significantly by the change of any one input
variable. A function f is said to be Lipschitz in the ith coordinate with Lipschitz constant ci if for
all sets of inputs x1, . . . , xn, and all xi 6= x′i, we have∣∣f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x

′
i, . . . , xn)

∣∣ ≤ ci .

Prove that this implies that for the above martingale sequence, we have |Zi − Zi−1| ≤ ci. In fact,
in most applications all cis are equal but occasionally one needs different Lipschitz constants for
each coordinate.
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2.1 Balls and Bins

Consider throwing m balls independently at random in n bins. Let Xi denote the index of the bin
in which the ith ball lands. Let A be a random variable denoting the number of empty of empty
bins. Then, we have A = f(X1, . . . , Xm) since we can compute the number of empty given the
information about all the balls.

We again define the Doob martingale

Zi = E [f(X1, . . . , Xi)] .

Since changing any Xi (changing the bin in which the ith ball was thrown) can only change the
number of empty bins by at most one, we get by the above discussion that for all i ∈ [m],

|Zi − Zi−1| ≤ 1 .

Thus, by Azuma’s inequality we get that

P [|Zn − Z0| ≥ t] ≤ 2 · exp
(
−t2/(2m)

)
.

Note that Z0 = E [f ] and hence we get that

P [|f − E [f ]| ≥ t] ≤ 2 · exp
(
−t2/(2m)

)
.

Thus, with high probability, the number of empty bins is within O(
√
m) of its expectation.

Exercise 2.1 Check that E [f ] = n ·
(
1− 1

n

)m
.

2.2 3-SAT

Consider a 3-SAT formula with n variables x1, . . . , xn, and m clauses. Let each variable be contained
in at most k clauses. Consider assigning each of the variables to be 0 or 1 independently with
probability 1/2 each. Let

Z = f(x1, . . . , xn) = number of clauses satisfied .

As before, we define the martingale sequence

Zi = E [Z | X1, . . . , Xi] ,

and note that changing the value of any variable can change the number of satisfied clauses by at
most k. Thus, we get by Azuma’s inequality that

P [|Z − E [Z]| ≥ t] ≤ 2 · exp
(
−t2/(2k2n)

)
.

As we saw earlier, E [7m/8] and hence we get that with high probability Z is within O(k
√
n) of

7m/8.
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2.3 Chromatic number of a random graph

Definition 2.2 Let G = (V,E) be an undiredcted graph and let k ∈ N. A valid k-coloring of G is
map g : V → [k], which assigns one of k colors to each vertex, and satisfies

g(i) 6= g(j) ∀ {i, j} ∈ E .

For a graph G, the chromatic number of G, denoted by χ(G), is defined to be the least non-negative
integer k such that G has a valid k-coloring.

Recall that Gn,p denotes a distribution on graphs where we pick each of the
(
n
2

)
pairs to be in E

independently with probability p. Thus, the graph is defined by the random variables
{
X{i,j}

}
i 6=j ,

where each X{i,j} = 1 independently with probability p and is 0 otherwise. Let Xi denote the
collection

{
X{i,j}

}
j>i

which containts information about all the neighbors of the vertex i in the

graph generate as above. Let Z = χ(G) be the random variable denoting the chromatic number of
the random graph generated generated as above. Note that

Z = f(X1, . . . , Xn) ,

and changing any Xi changes Z by at most 1. Thus, we have |Zi − Zi−1| ≤ 1 for the martingale
sequence Zi = E [f | X1, . . . , Xi]. Again, Azuma’s inequality gives

P [|Z − E [Z]| ≥ t] ≤ 2 · exp
(
−t2/(2n)

)
.

However, unlike the previous examples, computing E [Z] here is nontrivial. A more subtle use of
martingales by Bollobás [Bol88] shows that χ(G) = (1 + o(1)) · n

2 log(1−1/p) n
with high probability.

Note that the martingale used here revealed information about one vertex of the graph at a time.
We could also have revealed just one X{i,j} at a time and the function χ(G) would still be Lipschitz,
but the martingale sequence would have

(
n
2

)
terms and the concentration bound would have been

much weaker. The martingale sequence of the form used above is known as a vertex exposure
martingale.
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