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1 Chebyshev’s Inequality recap

In the previous lecture, we used Chebyshev’s inequality to get a bound on the probability that a
random variable X deviates from its expected value µ to some extent. More precisely, if we denote
the variance of X with σ2 (and assume it’s finite and non-zero), then Chebyshev’s inequality is the
following:

P [|X − µ| ≥ kσ] ≤ Var [X]

k2σ2
=

1

k2
. (1)

This is the so-called Second Moment Method, since it uses the second moment, i.e. the variance
of X. As an application of the above inequality, we presented some thresholds in the Erdős-Rényi
Gn,p model. We extend that example here to show something that at first looks like a paradox.

So, we consider a random graph G ∼ Gn,p and let Z1 be the number of copies of K4 in G, and Z2

be the number of copies of the following 5-node graph G0 in G:

v1

v2

v3

v4
v5G0 ≡

Observe that the subgraph induced by the nodes v1, v2, v3, v4 is exactly K4. Calculating the expec-
tations of Z1 and Z2, we observe the following:

1. • p� n−2/3 ⇒ E [Z1]→∞
• p� n−2/3 ⇒ E [Z1]→ 0

2. • p� n−5/7 ⇒ E [Z2]→∞
• p� n−5/7 ⇒ E [Z2]→ 0

We now consider the case n−5/7 � p � n−2/3. In this case, E [Z1] → 0 and E [Z2] → ∞. But, K4

is a subgraph of G0, so in every “appearance” of G0 we obviously have an “appearance” of K4. So,
did we calculate something wrong? Observing things more carefully, we can see that, given a fixed
K4, there can be many copies of G0 made by this copy of K4, simply by connecting each vertex of
K4 with as many different vertices as we want. For each such vertex, we get a distinct copy of G0.
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This idea can be made precise so as to formally explain the above paradox, but we will skip the
details.

In today’s lecture, we will consider even sharper concentration bounds, which come in the form
of the Chernoff/Hoeffding bounds. But before presenting the Chernoff bounds, we will also state
the very useful Jensen’s inequality, as is used in the context of probability theory. Consider the
definition of the variance of a random variable X. We have Var [X] = E

[
(X − µ)2

]
. We obviously

have Var [X] ≥ 0. Thus:

E
[
(X − µ)2

]
= E

[
X2
]
− (E [X])2 ≥ 0 ⇒ E

[
X2
]
≥ (E [X])2. (2)

The above inequality is just a special case of the well-known Jensen’s inequality.

2 Jensen’s Inequality

At first, we need to define what a convex real-valued function is.

Definition 2.1 (Convex function) Let f : R→ R. We say that f is convex if for any λ ∈ [0, 1]
we have that

f
(
λx1 + (1− λ)x2

)
≤ λf(x1) + (1− λ)f(x2).

The above property simply means that if we consider any two points (x1, f(x1)) and (x2, f(x2)),
the line segment connecting these two points on the plane lies above the graph of function f .

We can now state, without proof, Jensen’s inequality.

Theorem 2.2 (Jensen’s Inequality) Let f : R→ R be a convex function. Then for any random
variable X, we have that

E [f(X)] ≥ f(E [X]).

We can now see that (2) is just a special case of Jensen’s inequality, where we plug-in the convex
function f(x) = x2.

3 Chernoff/Hoeffding Bounds

We are now ready to get some sharper concentration bounds. We start by considering n independent
boolean random variables X1, ..., Xn, each having value 1 with probability pi. Let Z =

∑n
i=1Xi.

We set µ = E [Z] =
∑n

i=1 E [Xi] =
∑n

i=1 pi, and p = µ
n =

∑n
i=1 pi
n . So, we now want to get a bound

on P [Z ≥ (1 + δ)µ].

At first, we use the fact that ex is strictly increasing, and so

P [Z ≥ (1 + δ)µ] = P
[
etZ ≥ et(1+δ)µ

]
, t > 0

(Markov)

≤
E
[
etZ
]

et(1+δ)µ
.

(3)
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We now have:

E
[
etZ
]

= E
[
et(X1+...Xn)

]
= E

[
n∏
i=1

etXi

]
(indep)

=
n∏
i=1

E
[
etXi

]
=

n∏
i=1

[
pie

t + (1− pi)
]

=
n∏
i=1

[
1 + pi(e

t − 1)
]
.

At this point, we utilize the simple but very useful inequality:

∀x ∈ R, 1 + x ≤ ex.

Since all the quantities in the previous calculation are non-negative, we can plug the above inequality
in the previous calculation and we get:

E
[
etZ
]
≤

n∏
i=1

exp
(

(et − 1)pi

)
= exp

(
(et − 1)µ

) (4)

From (3) and (4) we get

P [Z ≥ (1 + δ)µ] ≤ exp
(

(et − 1)µ− t(1 + δ)µ
)
. (5)

We now want to minimize the right hand-side of the above inequality, with respect to t. Setting
its derivative to zero, we get

etµ− (1 + δ)µ = 0⇒
t = ln(1 + δ).

Using this value for t in (5), we get

P [Z ≥ (1 + δ)µ] ≤
exp

(
(et − 1)µ

)
exp

(
t(1 + δ)µ

)
≤ eδµ

(1 + δ)(1+δ)µ

=

(
eδ

(1 + δ)1+δ

)µ
.

Similarly, we can get that

P [Z ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)1−δ

)µ
.
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(Note that P [Z ≤ (1− δ)µ] = P
[
e−tZ ≥ e−t(1−δ)µ

]
.)

But we would like some simpler expression for the bound. It can be easily proved that(
eδ

(1 + δ)1+δ

)µ
≤ e−δ2µ/3, 0 < δ < 1,

and so we finally get:
P [Z ≥ (1 + δ)µ] ≤ e−δ2µ/3, for 0 < δ < 1. (6)

Similarly:
P [Z ≤ (1− δ)µ] ≤ e−δ2µ/3, for 0 < δ < 1. (7)

From (6) and (7) we get

P [|Z − µ| ≥ δµ] ≤ 2e−δ
2µ/3, for 0 < δ < 1. (8)

This last inequality is the version of the Chernoff/Hoeffding bounds that we are going to use the
most in the following. We now move to some applications.

4 Coin Tosses

We will now compare the above bound with what we can get from Chebyshev’s inequality. Let’s
assume that X1, ..., Xn are independent coin tosses, with P [Xi = 1] = 1

2 . We want to get a bound
on the value of Z =

∑n
i=1Xi. Using Chebyshev’s inequality as stated in (1), we get that

P [|Z − µ| ≥ δµ] ≤ Var [Z]

δ2µ2
.

And since in this particular case we have that Var [Z] = n/4 and µ = n/2, we get that

P [|Z − µ| ≥ δµ] ≤ 1

δ2n
.

The above bound is only inversely polynomial in n, while the one in (8) is exponentially small in n.
This fact will prove very useful when we want to use a union bound in a large collection of event,
as we will see in the application that follows.

5 Max-Cut in the Erdős-Rényi Model

Consider a graph G ∼ Gn,p. Let G = (V,E), with |V | = n and |E| = Z be the number of edges
in G. We want to prove that the size of a Max-Cut of G is with high probability roughly equal to
|E|/2, which is equal to the expected size of a random cut.

At first, we can get a concentration bound on the number of edges in the graph, which will help us
in the proof of the above statement. We have that Z =

∑
{u,v}:u,v∈V,u6=vX{u,v}, where X{u,v} is a

random variable indicating if there exists an edge between u and v. So we get

E [Z] =

(
n

2

)
p.
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Using Chernoff bounds, we get that

P
[
|Z − E [Z] | ≥ ε

(
n

2

)
p

]
≤ 2 exp

(−ε2(n2)p
3

)
.

So, if
−ε2(n2)p

3 � 1, then w.h.p the number of edges in G is some number in the interval(
(1− ε)

(
n

2

)
p, (1 + ε)

(
n

2

)
p

)
.

To simplify the calculations that follow, we can set
(
n
2

)
' n2

2 , as we can always adjust ε to match

the exact values. We also set m = n2p
2 , which is roughly equal to E [Z]. So, in order to prove our

statement about the size of a max-cut, it is sufficient to show that the number of edges crossing

any cut belongs in the interval
(

(1− δ)m2 , (1 + δ)m2

)
.

In order to do so, we fix a cut (S, S), with |S| = k and 1 ≤ k ≤ n
2 . Let ZS be the number of edges

crossing (S, S). Observe that ZS can be written as a sum of indicator 0 − 1 variables, and so we
can use the Chernoff Bounds that we have already proved. We have that µS = E [ZS ] = pk(n− k),
which means that the expected size of the cut only depends on the size of S and not on the specific
elements of S, which makes sense if we think of how we generate our graph. A useful fact here is

that k(n− k) ≤ n2

4 , and so µS ≤ pn2

4 . So, we have

P [ZS ≥ (1 + δ)m/2] ≤ P [ZS ≥ (1 + δ)µS ]

≤ exp
(
− δ2µS

3

)
= exp

(
− δ2

3
pk(n− k)

)
≤ exp

(
− δ2

6
pkn

) (
since k ≤ n

2

)
Taking a Union Bound now over all possible cuts, we have

P
[
Max-Cut ≥ (1 + δ)

m

2

]
≤
∑
(S,S)

P
[
ZS ≥ (1 + δ)

m

2

]

=

n/2∑
k=1

∑
(S,S):|S|=k

P
[
ZS ≥ (1 + δ)

m

2

]

≤
n/2∑
k=1

(
n

k

)
exp

(
− δ2

6
pkn

)

≤
n/2∑
k=1

nk exp
(
− δ2

6
pkn

)

=

n/2∑
k=1

exp
(
k lnn− δ2

6
pkn

)
.
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Suppose now that δ2pn
6 ≥ 2 lnn⇒ p ≥ 12 lnn

δ2n
. Using this fact in the inequality above we get

P
[
Max-Cut ≥ (1 + δ)

m

2

]
≤

n/2∑
k=1

exp
(
− k lnn

)
= O

( 1

n

)
.

The above inequality shows that if the probability p is sufficiently large (to be more precise, if it
such that the resulting graph has Ω(n lnn) edges in expectation), then the size of a Max-Cut in this

graph is w.h.p. very close to |E|2 . Observe that we cannot get this guarantee by using Chebyshev’s
inequality, as the number of events we are applying the union bound on is large, and the bound we
can get from Chebyshev is only O

(
1
n

)
for a single cut.

6 Randomized Routing in Networks

We will now consider a different application. Let’s assume we have a network of nodes, placed
on the vertices of an n-dimensional hypercube. In other words, we have a graph with node set
V = {0, 1}n, and edge set E = {(x, y) : dH(x, y) = 1}, where dH(x, y) is the Hamming distance
of two n-bit strings, i.e. the number of bits in which x and y differ. We are given a permutation
π : {0, 1}n → {0, 1}n, which simply translates to the fact that vertex x wants to send a packet to
vertex π(x). So, we want to find a routing strategy, such that each packet arrives to its destination
at the minimum possible time. We will use a synchronous model, i.e., the routing occurs in discrete
time steps, and in each time step, one packet is allowed to travel along each edge.

We are interested in oblivious strategies, i.e. for each x, the path which the packet going from x to
π(x) will use only depends on x and π(x) and no other vertices. Observe that a packet from x to
y takes time at least dH(x, y), and since dH(00...0, 11...1) = n, we have a worst-case lower bound
of O(n) for any strategy.

For the above problem we have the following results:

Theorem 6.1 [KKT90] For any deterministic, oblivious routing strategy on the hypercube, there

exists a permutation that requires Ω
(√

2n

n

)
time steps.

This is a bad lower bound for the worst-case scenario. Fortunately, randomization can give a
significant improvement.

Theorem 6.2 [VB81] There exists a randomized, oblivious routing strategy that terminates in
O(n) time steps w.h.p.

The randomized strategy of the above theorem consists of two phases:

• In phase 1, each packet is routed to an intermediate node r(i), where σ(i) is chosen uniformly
at random.

• In phase 2, each packet is routed from σ(i) to π(i).
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In both phases, we use the “bit-fixing” paths strategy to route the packets. In the “bit-fixing”
strategy, we move from a vertex x to a vertex y by checking all bits of the two nodes from left to
right, and at each bit in which x differs from y, we make the corresponding change so as to reduce
the Hamming distance between the two strings. Observe that the paths that we obtain from this
strategy are always shortest paths. Also, note that σ is not required to be a permutation of {0, 1}n,
so this strategy is oblivious, in the sense that each node doesn’t care about which intermediate node
is chosen by other nodes. This strategy breaks the symmetry in the problem by simply choosing
a random intermediate destination for each packet. This makes it impossible for an adversary to
select a “bad” permutation.

The analysis of the above strategy will follow in the next lecture.
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