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The first topic that we are going to delve into is Discrete Probability. The following are the reference
books for this topic:

• Probability and Computing: Randomized Algorithms and Probabilistic Analysis
by Michael Mitzenmacher, Eli Upfal

• The Probabilistic Method by Noga Alon, Joel H. Spencer

In this part of the course, we will develop some basic tools to analyze randomized algorithms and
random phenomena. Randomness is a convenient tool in the design of algorithms as it can often
conceptually simplify the algorithm. Also, as we will see, for some problems we do have efficient
randomized algorithms but do not yet have efficient deterministic algorithms.

The following is an example of a problem and a randomized algorithm, which we hope to be able
to analyze by the end of this part of the course.

Example 0.1 (Balanced Allocation) Given n servers and an incoming stream of requests, we
would like to assign requests in a way to minimize load on the most loaded server.

Let us first discuss about the different strategies to solve this problem. We consider the performance
of each strategy when we have serviced m requests (think of m as O(n)).

a) At every step, use the least loaded server. The maximum load of any server will be O
(
m
n

)
. This

is not a very good solution as we are going to use either O (n) space (to store all the loads and
find the minimum when a request comes in) or O (n) time complexity (to check all loads when
a request comes in).

b) At every step, use a random server. We can (and we will later) prove that the maximum load
of any server is O

(
m
n log n

)
. Note we only lose a log n factor in the maximum load and the time

and space complexity of each step is only O(1). log n.

c) At every step, use the least loaded out of two random servers. The time and space complexity
still remains O(1), but the maximum load now drops to O

(
m
n loglog n

)
. Several applications of

this idea were explored by Mitzenmacher in his PhD Thesis [Mitz96].

1 Introduction to Discrete Probability

Let us first consider a random experiment with only a finite number of outcomes. This gives a
probability space Ω with each outcome ω ∈ Ω represented as a cell in the grid below.
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ω1 ω2

. . .

ωN

If the number of outcomes is finite, then simply assigning a non-negative probability to each outcome
(which we call P [ω]) with the following properties, defines a valid probability space.

• P [ω] ≥ 0,∀ω ∈ Ω

•
∑
ω∈Ω

P [ω] = 1

An event is a subset of outcomes. Each outcome is called a simple event or basic event. In an infinite
probability space it might not be possible to assign a meaningful probability to each outcome or
basic event (we will see examples later). In that case we will choose a collection of events E which
is closed under union, intersection and complementation, such that the null event ∅ ∈ E .

• If two events E1 and E2 are independent, we have P [E1 ∩ E2] = P [E1]P [E2] (actually this
property defines independence).

• For any valid events, E1 and E2, we have, P [E1 ∪ E2] ≤ P [E1] + P [E2].

For any two valid events, E1 and E2, we define the probability of E1 conditioned on E2 as

P [E1|E2] =
P [E1 ∩ E2]

P [E2]

The following is an easy observation (¬E2 denotes the complement of E):

P [E1] = P [E2] · P [E1|E2] + P [¬E2] · P [E1|¬E2]

1.1 An Application: Randomized Identity-Testing

We use the above to prove the following lemma, which gives an algorithm for testing if a polynomial
f in n variables x1, . . . , xn over a field F is identically zero.

Lemma 1.1 (Schwartz-Zippel lemma) Let f(x1, x2, . . . , xn) be a non-zero polynomial of degree
d ≥ 0, i.e.,

f(x1, x2, . . . , xn) =
∑

ci1i2...in · x
i1
1 · x

i2
2 · · ·x

in
n

s.t., i1 + i2 + . . .+ in ≤ d

over a field, F. Let S ⊆ F, be a finite subset and let x1, x2, . . . , xn be selected randomly from S
independently. Then,

P [f(x1, x2, . . . , xn) = 0] ≤ d

|S|
.
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Proof: We will prove this lemma by induction on n. This lemma can be proved simply by using
conditional probability.

Base Case: n = 1
A non zero polynomial, f(x1) will have at most d roots to the equation f(x1) = 0. Hence,
P [f(x1) = 0] ≤ d

|S| . The inequality condition is because the number of roots might be less than d,
or all of them might not be in S.

Induction Step
Let us say that this hold true any polynomial g(x2, . . . , xn) in n − 1 variables. We need to prove
that it holds true for f(x1, x2, . . . , xn). We can write f as:

f(x1, x2, . . . , xn) = xk1 · g(x2, . . . , xn) + h(x1, x2, . . . , xn)

where, k is the maximum power of x1. Thus we have 0 < k ≤ d (If k = 0 then we are already
done). We also have the deg(g(x2, . . . , xn)) ≤ d− k.

Now let us define two events.
E1 : f(x1, x2, . . . , xn) = 0
E2 : g(x2, . . . , xn) = 0

We can hence write,

P [E1] = P [E2] · P [E1|E2] + P [¬E2] · P [E1|¬E2] .

Without loss of generality, let us choose variables x2, . . . , xn first and then choose the value of x1.
Then, we have,

P [E2] ≤ d− k
|S|

∵ deg(g(x2, . . . , xn)) ≤ d− k

P [E1|E2] ≤ 1 ∵ from the definition of probability
prob¬E2 ≤ 1 ∵ from the definition of probability

P [E1|¬E2] ≤ k

|S|
∵ fixing x2, . . . , xn s.t. g(x2, . . . , xn)

we get a degree k non-zero polynomial in x1

Hence P [f(x1, x2, . . . , xn) = 0] ≤ d

|S|
.

Consider the following example which applied the Schwartz-Zippel lemma for testing if a bi-partite
graph has a perfect matching.

Example 1.2 (Bi-Partite Matching) Given a bi-partite graph, G = (U, V,E) with |U | = |V | =
n, check whether the graph has a perfect matching.

Let us define a Tutte matrix, An×n,

Aij =

{
xij if (i, j) ∈ E
0 else
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Note that A is not necessarily symmetric. The determinant of A can be written as,

Det(A) =
∑

π:[n]→[n]

sign(π)
n∏
i=1

Ai,π(i)

where π defines the permutation from rows to columns.

Observe that G has a perfect matching iff Det(A) 6= 0. If there is no perfect matching then the
term corresponding to each permutation involves a zero entry of A and hence Det(A) = 0. On the
other hand, if there is perfect matching, then it corresponds to a non-zero term for a permutation,
say π0, in the above summation. Also, no other permutation will involve all the variables xi,π0(i),
and hence this term will not cancel. Thus, Det(A) is a non-zero polynomial when there exists a
perfect matching.

In this case, computing the determinant is expensive with n! terms. But if we are given the values
of the variables xij , we can simply compute the determinant using the Gaussian elimination method
in O

(
n3
)
. The degree of the polynomial above is n. Thus, if we assign all variables randomly from

a set of 2n real values, if Det(A) = 0, we will detect it with probability at least 1/2.

The randomized algorithm by Schwartz-Zippel Lemma can be used to parallelize the checking
as well. There is no known deterministic algorithm for this problem which can be parallelized
efficiently.

1.2 Random Variables and Expectation

A random variable can be defined as a function X : Ω→ R. Note that a random variable is just a
fixed function. The randomness is simply in outcome ω.

For a random variable, its expectation is defined as,

E [X] =
∑
ω∈Ω

P [ω] ·X(ω)

For e.g., if X : Ω→ N,

E [X] =
∑
i

P [X = i] · i

The following properties of expectation will be quite useful.

• Constants : If c is a constant, E [c] = c

• Linearity : If a, b, c are constants and X,Y are random variables, then E [aX + bY + c] =
a · E [X] + b · E [Y ] + c

1.2.1 Computation of Expected Values

We will demonstrate the computation of expectations with some examples.

Let Z be a random variable of number of heads associated with n tosses of coins. Let Xi be the
random variable associated with the ith toss, defined as

Xi =

{
1 if toss i is heads
0 if toss i is tails

.
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Thus Ω = {0, 1}n. Let us assume that the coin tosses are independent of each other (though, as
you will see, we will not need this assumption here).

Example 1.3 With the assumption that P [Xi = 1] = P [Xi = 0] = 1/2, we want to compute E [Z].

Since Z =
∑
Xi, we have, E [Z] =

∑
EXi. Now,

EXi = 1 · P [Xi = 1] + 0 · P [Xi = 0]

= P [Xi = 1] = 1/2

Hence EX = n/2.

Note that if a random variable, Xe takes a binary value if an event, e occurs or not, then the
expected value of Xe is P [e].

Example 1.4 Instead of the uniform probability of heads and tails, if P [Xi = 1] = p and P [Xi = 0] =
1− p, then what is E [Z]?

E [Z] =
∑
i

EXi

=
∑
i

1 · P [Xi = 1] + 0 · P [Xi = 0]

=
∑
i

P [Xi = 1] = n · p

Note that we did not use independence in the above calculations. We just needed that for each i,
EXi = p.

Example 1.5 What is E [#occurrences of pattern 100] (assuming uniform probability)? Here 1
denotes a heads and 0 denotes tails.

Let,

Xi =

{
1 if (i, i+ 1, i+ 2) ≡ 100
0 else

Again, denoting the number of occurrences by Z, we have

E [Z] =

n−2∑
i=1

EXi =
n− 2

8

Similarly, E [#occurrences of pattern 101] =
n− 2

8
For the next example, we consider an infinite sequence of independent coin tosses, with P [heads] =
p for each coin.

Example 1.6 Given, that P [heads] = p, what is E [#tosses till the first heads]?
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We define Z as the number of tosses till the first heads. We know that P [Z = i] = (1 − p)i−1p.
Thus,

EX =

∞∑
i=1

i · (1− p)i−1 · p

= p ·
∞∑
i=1

i · (1− p)i−1

= p · 1

(1− (1− p))2

=
1

p

Here, we used the fact that for |x| ≤ 1,
∑∞

i= i · xi−1 = 1
(1−x)2

.

We can also compute this expectation in another way. Let E be the event that the first toss is
heads. Then we have,

E [X] = E [Z|E] · P [E] + E [Z|¬E] · P [¬E]

= 1 · P [E] + (1 + E [X]) · (1− p)

Thus we have, E [Z] =
1

p
.

The above is known as a geometric random variable with parameter p.

Exercise 1.7 Consider an infinite sequence of independent tosses of a fair coin. Define the fol-
lowing random variables:

Z1 = Number of tosses after which the pattern HTT first appears

Z2 = Number of tosses after which the pattern HTH first appears

Compute E [Z1] and E [Z2] and verify that they are not equal. Why is one patten more likely to
occur first even though they are both occur an equal number of times (in expectation) in a given
number of tosses?
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