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1 More on Adjacency Matrices

Recall that we have G = (V, E) and its adjacency matrix A and eigenvalues uy > pug > ... > up
and Y p; =tr(A) =0.

Exercise 1.1

1. Show that the following holds

1

=N " deg(i) < p1 < maxdeg(i

" E eg(i) < m < maxdeg(i)
1%

2. If G has a positive eigenvector with eigenvalue A, then for all other eigenvalues pu, with [p] < A.

3. If G is connected, then Ag has a positive eigenvector with eigenvalue pi. (Use Rayleigh
quotient)

Exercise 1.2 If G has Ag with eigenvalues, 3 > pg > ... > iy, then G can be colored with
|p1] + 1 colors.

This exercise was discussed in class. We follow the same proof scheme as before, for showing that
a graph with maximum degree d can be colored with d 4 1 colors. We proceed by induction on the
number of vertices in G. The case with n = 1 is trivial since the only eigenvalue is 0 and the graph
can be colored with 1 color.

For the case with n vertices, we know (from the previous exercise) that pu1 > 3. deg(i).
Thus, there must be a vertex ¢ with degree at most p;. Since degrees are integers, we must have
deg(i) < |u1]. Consider the graph G’ (on n — 1 vertices) obtained by removing the vertex i from
G. Use Rayleigh quotients to prove that if v is the largest eigenvalue of G’, then 11 < ;. By
induction, G’ can be colored with 11| +1 < |u1] + 1 colors. Since the vertex i we removed has at
most || neighbors, we can assign it a color which is different from the colors of all its neighbors.
This gives a valid coloring of G.

Exercise 1.3 Suppose G’ is generated from G wvia removing a verter. Let py > -+ > u, be the
eigenvalues of G and let vy > -+ > v,_1 be the eigenvalues of G'. Then use Rayleigh quotients to
show that
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2 Random Walk on Graphs

Given a starting vertex iy € V, a simple random walk on the graph G = (V| E) is the following
process:

- Start at the given vertex ig.

- At each step, pick a random neighbor of the current vertex and move to neighbor vertex.

Consider a vector p where p(*) (7) is supposed to denote the chance that the random walk after ¢
steps, is at vertex j. If the starting vertex is 4, then p© e R™ is a vector with p(®) (J)=1if 5 =1p
and 0 otherwise. In general a probability distribution p over vertices must have the property that

>;p(j)=Tland p(j) >0VjeV.

To understand the distribution p{*t1) in terms of p(, we note that if at step t + 1 we are to land
at a vertex 7, then at step ¢ we must be at some j which is a neighbor of j (which we denote by
j ~1). We can then write

1
D)5y — &) (s
P i) = P (J) - .
0= S0
In matrix form, this gives
p(t+1) - M .p(t) 7
where M is a matrix with entries
1 ep . .
M;; = deg(3) if i~ )
0 otherwise

Note that M = AgD~! where D is a diagonal matrix with entries D;; = deg(i) and A is the
adjacency matrix. The matrix M is also referred to as the diffusion matrix for the simple random
walk on GG. We can use linear algebra to analyze random walks once we notice that the distribution

after t steps can be written as
p(t) - Mt .p(O) .

In particular, we will be interested in the question of how fast the random walk reaches a stationary
distribution i.e., a distribution which does not change as the random walk proceeds.

Definition 2.1 (Stationary distribution) A distribution 7 is a stationary distribution for a
random walk with diffusion matrizc M if

Mnr=m.

Thus, 7 is simply a non-negative eigenvector of M with eigenvalue 1, which is multiplied by an
appropriate positive constant to ensure that ). w(¢) = 1. For all graphs, the random walk on G
will have a stationary distribution (we will prove this in the problem set), but not all walks might
reach the stationary distribution if started from an arbitrary vertex. For example, if G has many
connected components, then a random walk will stay in it’s own connected component. Also, G is
bipartite, then a walk will oscillate between the two sides. We will show in the analysis below that
these are essentially the only two obtacles to reaching a stationary distribtion.



2.1 Random walks on regular graphs

One problem in applying some of the theory from previous lectures is that the matrix M is not
symnmetric. However, if G is d-regular (each vertex has degeee d), then the matrix M becomes

1
M =AD"= S A,
and is a symmetric matrix. We will see later how to extend the ideas to general graphs. We
will also assume that the graph G is connected, as otherwise we can analyze the walk in each
connected component separately. Then the eigenvalues for the matrix M are u1/d, ..., u,/d and

the eigenvectors are the same as those for the matrix A.

Exercise 2.2 Suppose G is d-reqular. Then x = (1/n,...,1/n)" is a stationary distribution for the
simple random walk on G.

Let p = max;—g, _n |ui| = max{pua, —p,}. We will show that the distribution of the random walk

converges to the stationary distribution as long as u < d. Recall that if G is connected iff po < d
and non-bipartite iff p, > —d.

Lemma 2.3 Let G be a d-regular graph and let y = max{po, —pin}. Then, aftert steps of a simple
random walk on G started at an arbitrary vertez ig, we have that

VieV, |p®3)— 1/n) < (%)t

Proof: Let M = 1A such that p) = M*p(®). Let uy,...,u, be the orthonormal eigenbasis of M
such that we can write p(©) = Yo Q.

p® = Mip®)
= Mt(z Qi)

= Zai(%)tui (Since M'u; = (%)tu,)

What is u1? Setting uy = c¢(1/n, ..., 1/n)T, (u1,u1) = Y, 2(1/n)? = 1 givesus uy = (1/v/n, ..., 1/v/n)T.
What is a1? Since p(©) = > ou; and uq, ..., u, form an orthonormal basis,

ay = <p(0),u1> = \/152;1%(0) = \/15
So we have

p® = ArtplO)

(O] () e an ()



Thus we have

T

1
n

t t
Let e denote the “error vector” s (%) ug + ... + an (%) u,. We need to show that for each

i€V, |e(i)| < (u/d)t. The following claim finishes the proof.
. 12
Claim 2.4 |le]| =1/>;le(d)]” < 4.

Proof:

Jel? = (e.c) = Y2 (1) < @a) (4 < (5

’l:2 1=

Here the last inequality follows from the fact that <p(0),P<O)> =", a?=1. ]

2.2 Random walks on general undirected graphs

For general graphs G, we have M = AD~! as defined above. Let D~ be the diagonal matrix with

entries (D_%)M = TU The analysis for random walks is very similar to the above, but we
eg(i
use the matrix D~%/2AD~1/2 which is similar to the matrix M = AD~!.

Exercise 2.5 Show that AD™' = M ~ DféADfé.

Thus, the eigenvalues of the two matrices are the same thertle is an isomorphic between their
eigenspaces for each eigenvalue. However, the matrix D™2 AD™2 is symmetric and has real eigen-
values and an orthonormal basis of real eigenvectors.

Random walks on a connected undirected graph can be analyzed by expressing the initial distribu-
tion in terms of the eigenvectors of the matrix D™2 AD™2. We will leave the details to the problem
set.



