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1 More on Adjacency Matrices

Recall that we have G = (V,E) and its adjacency matrix A and eigenvalues µ1 ≥ µ2 ≥ . . . ≥ µn
and

∑
µi = tr(A) = 0.

Exercise 1.1

1. Show that the following holds

1

n

∑
i∈V

deg(i) ≤ µ1 ≤ max
i∈V

deg(i)

2. If G has a positive eigenvector with eigenvalue λ, then for all other eigenvalues µ, with |µ| ≤ λ.

3. If G is connected, then AG has a positive eigenvector with eigenvalue µ1. (Use Rayleigh
quotient)

Exercise 1.2 If G has AG with eigenvalues, µ1 ≥ µ2 ≥ . . . ≥ µn, then G can be colored with
bµ1c+ 1 colors.

This exercise was discussed in class. We follow the same proof scheme as before, for showing that
a graph with maximum degree d can be colored with d+ 1 colors. We proceed by induction on the
number of vertices in G. The case with n = 1 is trivial since the only eigenvalue is 0 and the graph
can be colored with 1 color.

For the case with n vertices, we know (from the previous exercise) that µ1 ≥ 1
n

∑
i∈V deg(i).

Thus, there must be a vertex i with degree at most µ1. Since degrees are integers, we must have
deg(i) ≤ bµ1c. Consider the graph G′ (on n − 1 vertices) obtained by removing the vertex i from
G. Use Rayleigh quotients to prove that if ν1 is the largest eigenvalue of G′, then ν1 ≤ µ1. By
induction, G′ can be colored with bν1c+ 1 ≤ bµ1c+ 1 colors. Since the vertex i we removed has at
most bµ1c neighbors, we can assign it a color which is different from the colors of all its neighbors.
This gives a valid coloring of G.

Exercise 1.3 Suppose G′ is generated from G via removing a vertex. Let µ1 ≥ · · · ≥ µn be the
eigenvalues of G and let ν1 ≥ · · · ≥ νn−1 be the eigenvalues of G′. Then use Rayleigh quotients to
show that

µ1 ≥ ν1 ≥ µ2 ≥ ν2 ≥ . . . ≥ νn−1 ≥ µn .
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2 Random Walk on Graphs

Given a starting vertex i0 ∈ V , a simple random walk on the graph G = (V,E) is the following
process:

- Start at the given vertex i0.

- At each step, pick a random neighbor of the current vertex and move to neighbor vertex.

Consider a vector p(t) where p(t)(j) is supposed to denote the chance that the random walk after t
steps, is at vertex j. If the starting vertex is i, then p(0) ∈ Rn is a vector with p(0)(j) = 1 if j = i0
and 0 otherwise. In general a probability distribution p over vertices must have the property that∑

j p(j) = 1 and p(j) ≥ 0 ∀j ∈ V .

To understand the distribution p(t+1) in terms of p(t), we note that if at step t + 1 we are to land
at a vertex i, then at step t we must be at some j which is a neighbor of j (which we denote by
j ∼ i). We can then write

p(t+1)(i) =
∑
j∼i

p(t)(j) · 1

deg(j)
.

In matrix form, this gives
p(t+1) = M · p(t) ,

where M is a matrix with entries

Mij =

{
1

deg(j) if i ∼ j
0 otherwise

.

Note that M = AGD
−1 where D is a diagonal matrix with entries Dii = deg(i) and A is the

adjacency matrix. The matrix M is also referred to as the diffusion matrix for the simple random
walk on G. We can use linear algebra to analyze random walks once we notice that the distribution
after t steps can be written as

p(t) = M t · p(0) .

In particular, we will be interested in the question of how fast the random walk reaches a stationary
distribution i.e., a distribution which does not change as the random walk proceeds.

Definition 2.1 (Stationary distribution) A distribution π is a stationary distribution for a
random walk with diffusion matrix M if

Mπ = π .

Thus, π is simply a non-negative eigenvector of M with eigenvalue 1, which is multiplied by an
appropriate positive constant to ensure that

∑
i π(i) = 1. For all graphs, the random walk on G

will have a stationary distribution (we will prove this in the problem set), but not all walks might
reach the stationary distribution if started from an arbitrary vertex. For example, if G has many
connected components, then a random walk will stay in it’s own connected component. Also, G is
bipartite, then a walk will oscillate between the two sides. We will show in the analysis below that
these are essentially the only two obtacles to reaching a stationary distribtion.
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2.1 Random walks on regular graphs

One problem in applying some of the theory from previous lectures is that the matrix M is not
symnmetric. However, if G is d-regular (each vertex has degeee d), then the matrix M becomes

M = AD−1 =
1

d
·A ,

and is a symmetric matrix. We will see later how to extend the ideas to general graphs. We
will also assume that the graph G is connected, as otherwise we can analyze the walk in each
connected component separately. Then the eigenvalues for the matrix M are µ1/d, . . . , µn/d and
the eigenvectors are the same as those for the matrix A.

Exercise 2.2 Suppose G is d-regular. Then x = (1/n, ..., 1/n)T is a stationary distribution for the
simple random walk on G.

Let µ = maxi=2,...,n |µi| = max{µ2,−µn}. We will show that the distribution of the random walk
converges to the stationary distribution as long as µ < d. Recall that if G is connected iff µ2 < d
and non-bipartite iff µn > −d.

Lemma 2.3 Let G be a d-regular graph and let µ = max{µ2,−µn}. Then, after t steps of a simple
random walk on G started at an arbitrary vertex i0, we have that

∀i ∈ V,
∣∣∣p(t)(i)− 1/n

∣∣∣ ≤ (µ
d

)t
.

Proof: Let M = 1
dA such that p(t) = M tp(0). Let u1, ..., un be the orthonormal eigenbasis of M

such that we can write p(0) =
∑n

i=1 αiui.

p(t) = M tp(0)

= M t(
∑
i

αiui)

=
∑
i

αi(
µi
d

)tui (Since M tui = (
µi
d

)tui)

What is u1? Setting u1 = c(1/n, ..., 1/n)T , 〈u1, u1〉 =
∑

i c
2(1/n)2 = 1 gives us u1 = (1/

√
n, ..., 1/

√
n)T .

What is α1? Since p(0) =
∑

i αiui and u1, ..., un form an orthonormal basis,

α1 =
〈
p(0), u1

〉
=

1√
n

∑
i

p
(0)
i =

1√
n

So we have

p(t) = M tp(0)

=
1√
n

(
d

d

)t


1√
n

.

.

.
1√
n

+ α2

(µ2
d

)t
u2 + ...+ αn

(µn
d

)t
un
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Thus we have

p(t) −


1
n
.
.
.
1
n

 = α2

(µ2
d

)t
u2 + ...+ αn

(µn
d

)t
un

Let e denote the “error vector” α2

(µ2
d

)t
u2 + ... + αn

(µn
d

)t
un. We need to show that for each

i ∈ V , |e(i)| ≤ (µ/d)t. The following claim finishes the proof.

Claim 2.4 ‖e‖ =
√∑

i |e(i)|
2 ≤ µ

d .

Proof:

‖e‖2 = 〈e, e〉 =
n∑
i=2

α2
i

(µi
d

)2
≤

(
n∑
i=2

α2
i

)
·
(µ
d

)2
≤
(µ
d

)2
.

Here the last inequality follows from the fact that
〈
p(0),p

(0)
〉

=
∑n

i=1 α
2
i = 1.

2.2 Random walks on general undirected graphs

For general graphs G, we have M = AD−1 as defined above. Let D−
1
2 be the diagonal matrix with

entries (D−
1
2 )ii =

1√
deg(i)

. The analysis for random walks is very similar to the above, but we

use the matrix D−1/2AD−1/2 which is similar to the matrix M = AD−1.

Exercise 2.5 Show that AD−1 = M ∼ D−
1
2AD−

1
2 .

Thus, the eigenvalues of the two matrices are the same there is an isomorphic between their
eigenspaces for each eigenvalue. However, the matrix D−

1
2AD−

1
2 is symmetric and has real eigen-

values and an orthonormal basis of real eigenvectors.

Random walks on a connected undirected graph can be analyzed by expressing the initial distribu-
tion in terms of the eigenvectors of the matrix D−

1
2AD−

1
2 . We will leave the details to the problem

set.
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