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1 Graph Entropy

We now consider an application of mutual information, using the concept of Graph En-
tropy defined by Körner [Kör73], and later used by Newman and Wigderson [NW95] for
certain circuit (formula) lower bound problems (see also the book by Jukna [Juk12]). This
also provides an example of the scenario we discussed in the previous lecture, when the
mutual information I(X; Y is being optimized over our choice of random variables X, Y,
rather than being computed for given random variables.

Given a graph G = (V , E), we define the graph entropy H(G) as

min
X,Y

I(X; Y)

s. t. X is uniformly distributed over V
Y is an independent set in G containing X

Note that while the concept is called “entropy”, we are defining it as a mutual informa-
tion. The name entropy comes from the original definition related to the best (asymptotic)
transmission rate for a random variable distributed over the vertices of the graph, when
we are required to use different symbols for vertices connected by edges (but not neces-
sarily otherwise). It can be proved that this asymptotic limit comes out to be equal to the
mutual information above, and we will use this version of the definition. Also, while the
graph entropy can be defined with respect to any distribution P on the vertex set V , we
will restrict our discussion to the uniform distribution. Let us check a couple of examples.

Example 1.1 (Complete graph). Let Kn denote the complete graph on n vertices. Then H(Kn) =
log n. This follows from the fact that any independent set is of size at most one, and thus, we must
have Y = X. This gives

I(X; Y) = H(X)− H(X|Y) = log n − 0 = log n .

Also note that log n is the maximum possible value for a graph with |V| = n.

Example 1.2 (Bipartite graph). Let G be a bipartite graph, with n1 vertices on one side and n2
vertices on the other. Then, for any vertex v, all the vertices on the side of v form an indepdent set
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containing v. If X is a uniformly random vertex, and Y equals all the vertices on the side of X, then

I(X; Y) ≤ H(Y) =
n1

n1 + n2
· log

(
n1 + n2

n1

)
+

n2

n1 + n2
· log

(
n1 + n2

n2

)
≤ 1 .

Since H(G) is the minimum of I(X; Y) over all (X, Y), we get that H(G) ≤ 1.

Exercise 1.3. Let α(G) denote the size of the maximum independent set in a graph G. Prove that
H(G) ≥ log

(
n

α(G)

)
.

An important property of graph entropy that we need, is that it is sub-additive under union
of edges.

Proposition 1.4 (Sub-additivity of graph entropy). Let G1 = (V , E1) and G2 = (V , E2) be
two graphs, and let G = (V , E1 ∪ E2), which we denote by G = G1 ∪ G2. Then,

H(G) = H(G1 ∪ G2) ≤ H(G1) + H(G2) .

Proof: Let (X, Y1) and (X, Y2) be pairs of random variables achieving H(G1) and H(G2)
(note that in both cases X is a uniform vertex from V). We can define (why?) a joint
distribution on the tuple (X, Y1, Y2) such that Y1 and Y2 are independent conditioned on
any value of X. Take this to be the joint distribution of the tuple (X, Y1, Y2) and let Y =
Y1 ∩ Y2. Note that if Y1, Y2 are independent sets containing X in G1 and G2 respectively,
then Y1 ∩ Y2 is an indepdent set in G, containing X. This gives,

H(G1 ∪ G2) ≤ I(X; Y)
≤ I(X; (Y1, Y2)) (data processing inequality)
= H(Y1, Y2)− H(Y1, Y2 | X)

= H(Y1, Y2)− H(Y1 | X)− H(Y2 | X) (conditional independence)
≤ H(Y1) + H(Y2)− H(Y1 | X)− H(Y2 | X) (sub-additivity of entropy)
= H(G1) + H(G2) ,

which proves the claim.

1.1 Covering the complete graph with bipartite graphs

The properties of graph entropy considered so far can be used to provide a very simple
answer to the following combnatorial question: what is the minimum number of bipartite
graphs G1, . . . , Gr such that their edges cover all the edges of the complete graph i.e.,

Kn = G1 ∪ · · · ∪ Gr .
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Note that just counting edges does not give a very strong bound since Kn has n(n − 1)/2
edges, while even a single bipartite graph can have n2/4 edges. On the other hand, graph
entropy will yield a (tight!) boound of log n. This also proves a special case of the formula-
size lower bounds considered by Newman and Wigderson [NW95], when considering∨∧∨

formulas (three alternating layers of OR, AND, and OR gates, with AND gates hav-
ing fan-in 2) for the threshold function checking ∑n

i=1 xi ≥ 2. Take a look at the paper for
more details.

Back to the case of graphs, when Kn = G1 ∪ · · · ∪ Gr, we have

log n = H(Kn) ≤ H(G1) + · · ·+ H(Gr) ≤ r ,

where we used the bounds on the graph entropy of complete and bipartite graphs, as
computed earlier.

Exercise 1.5. Prove that the above bound is tight. In particular, when n is a power of 2, find a
covering of Kn with log n bipartite graphs (Hint: Think of each vertex as a (log n)-bit string).

2 Kullback Leibler divergence

The Kullback-Leibler divergence (KL-divergence), also known as relative entropy, is a
measure of how different two distributions are. Note that here we will talk in terms of
distributions instead of random variables, since this is how KL-divergence is most com-
monly expressed. It is of course easy to think of a random variable corresponding to a
given distribution and vice-versa. We will use capital letters like P(X) to denote a distri-
bution for the random variable X and lowercase letters like p(x) to denote the probability
for a specific element x.

Let P and Q be two distributions on a universe X , then the KL-divergence between P and
Q is defined as:

D(P||Q) := ∑
x∈U

p(x) log
(

p(x)
q(x)

)
Let us consider a simple example.

Example 2.1. Suppose X = {a, b, c}, and p(a) = 1
3 , p(b) = 1

3 , p(c) = 1
3 and q(a) = 1

2 ,
q(b) = 1

2 , q(c) = 0. Then

D(P||Q) =
2
3

log
2
3
+ ∞ = ∞ .

D(Q||P) = log
3
2
+ 0 = log

3
2

.

The above example illustrates two important facts: D(P||Q) and D(Q||P) are not necessar-
ily equal, and D(P||Q) may be infinite. Even though the KL-divergence is not symmetric,
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it is often used as a measure of “dissimilarity” between two distribution. Towards this, we
first prove that it is non-negative and is 0 if and only if P = Q.

Lemma 2.2. Let P and Q be distributions on a finite universe X . Then D(P||Q) ≥ 0 with equality
if and only if P = Q.

Proof: Let Supp(P) = {x | p(x) > 0}. Then, we must have Supp(P) ⊆ Supp(Q) if
D(P, Q) < ∞. We can then assume without loss of generality that Supp(Q) = X . Using
the fact the log is a (strictly) concave function, with Jensen inequality, we have:

D(P||Q) = ∑
x∈X

p(x) log
p(x)
q(x)

= ∑
x∈Supp(P)

p(x) log
p(x)
q(x)

= − ∑
x∈Supp(P)

p(x) log
q(x)
p(x)

≥ − log

 ∑
x∈Supp(P)

p(x) · q(x)
p(x)


= − log

 ∑
x∈Supp(P)

q(x)


≥ − log 1 = 0 .

For the case when D(P||Q) = 0, we note that this implies p(x) = p(x) ∀x ∈ Supp(P),
which in turn gives that p(x) = q(x) ∀x ∈ X .

Like entropy and mutual information, we can also derive a chain rule for KL-divergence.
Let P(X, Y) and Q(X, Y) be two distributions for a pair of variables X and Y. We then have
the following expression for D(P(X, Y)||Q(X, Y)).

Proposition 2.3 (Chain rule for KL-divergence). Let P(X, Y) and Q(X, Y) be two distributions
for a pair of variables X and Y. Then,

D(P(X, Y) ∥ Q(X, Y)) = D(P(X) ∥ Q(X)) + E
x∼P

[D(P(Y|X = x) ∥ Q(Y|X = x))]

= D(P(X) ∥ Q(X)) + D(P(Y|X) ∥ Q(Y|X))

Here P(X) and Q(X) denote the marginal distributions for the first variable, and P(Y|X =
x) denotes the conditional distribution of Y.

Proof: The proof follows from (by now) familiar manipulations of the terms inside the
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log function.

D(P(X, Y) ∥ Q(X, Y)) = ∑
x,y

p(x, y) log
p(x, y)
q(x, y)

= ∑
x,y

p(x)p(y|x) log
(

p(x)
q(x)

· p(y|x)
q(y|x)

)
= ∑

x
p(x) log

p(x)
q(x) ∑

y
p(y|x) + ∑

x
p(x)∑

y
p(y|x) log

p(y|x)
q(y|x)

= D(P(X) ∥ Q(X)) + ∑
x

p(x) · D(P(Y|X = x) ∥ Q(Y|X = x))

= D(P(X) ∥ Q(X)) + D(P(Y|X) ∥ Q(Y|X))

Note that if P(X, Y) = P1(X)P2(Y) and Q(X, Y) = Q1(X)Q2(Y), then D(P||Q) = D(P1||Q1)+
D(P2||Q2).

We note that KL-divergence also has an interesting interpretation in terms of source cod-
ing. Writing

D(P||Q) = ∑ p(x) log
p(x)
q(x)

= ∑ p(x) log
1

q(x)
− ∑ p(x) log

1
p(x)

,

we can view this as the number of extra bits we use (on average) if we designed a code
according to the distribution P, but used it to communicate outcomes of a random variable
X distributed according to Q. The first term in the RHS, which corresponds to the average
number of bits used by the “wrong” encoding, is also referred to as cross entropy.

2.1 Convexity of KL-divergence

Before we consider applications, let us prove an important property of KL-divergence. We
prove below that D (P ∥ Q), when viewed as a function of the inputs P and Q, is jointly
convext in both it’s inputs i.e., it is convex in the input (P, Q) when viewed as a tuple.

Proposition 2.4. Let P1, P2, Q1, Q2 be distributions on a finite universe X , and let α ∈ [0, 1].
Then,

D (α · P1 + (1 − α) · P2 ∥ α · Q1 + (1 − α) · Q2) ≤ α · D (P1 ∥ Q1) + (1 − α) · D (P2 ∥ Q2) .

Proof: For this proof, we will use an inequality called the log-sum inequality, the proof of
which is left is an exercise. The inequality states that for a1, a2, b1, b2 ≥ 0

(a1 + a2) · log
(

a1 + a2

b1 + b2

)
≤ a1 · log

(
a1

b1

)
+ a2 · log

(
a2

b2

)
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Using the above inequality, we can bound the LHS as

D (α · P1 + (1 − α) · P2 ∥ α · Q1 + (1 − α) · Q2)

= ∑
x∈X

(α · p1(x) + (1 − α) · p2(x)) · log
(

α · p1(x) + (1 − α) · p2(x)
α · q1(x) + (1 − α) · q2(x)

)
≤ ∑

x∈X
α · p1(x) · log

(
α · p1(x)
α · q1(x)

)
+ (1 − α) · p2(x) · log

(
(1 − α) · p2(x)
(1 − α) · q2(x)

)
= α · D (P1 ∥ Q1) + (1 − α) · D (P2 ∥ Q2) .

Exercise 2.5 (Log-sum inequality). Prove that for a1, a2, b1, b2 ≥ 0

(a1 + a2) · log
(

a1 + a2

b1 + b2

)
≤ a1 · log

(
a1

b1

)
+ a2 · log

(
a2

b2

)
.
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