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1 Joint Entropy

We have two random variables X and Y. The joint distribution of the two random variables
(X, Y) takes values (x, y) with probability p(x, y). Merely by using the definition, we can
write down the entropy of Z = (X, Y) trivially. However what we are more interested in
is seeing how the entropy of (X, Y), the joint entropy, relates to the individual entropies,
which we work out below:

H(X, Y) = ∑
x,y

p(x, y) log
1

p(x, y)

= ∑
x,y

p(x)p(y|x) log
1

p(x)
+ ∑

x,y
p(x)p(y|x) log

1
p(y|x)

= ∑
x

p(x) log
1

p(x) ∑
y

p(y|x) + ∑
x,y

p(x)p(y|x) log
1

p(y|x)

= H(X) + ∑
x

p(x)H(Y|X = x)

= H(X) + E
x
[H(Y|X = x)]

Denoting Ex [H(Y|X = x)] as H(Y|X), this can simply be written as

H(X, Y) = H(X) + H(Y|X)

If we were to redo the calculations, we could similarly obtain:

H(X, Y) = H(Y) + H(X|Y)
This is called the Chain Rule for Entropy. Note that in the calculations above, we treat
(Y|X = x) as a random variable, with distribution given by P [Y = y | X = x] = p(y|x).
Also note that H(Y|X) is a simply a shorthand for the expected entropy of (Y|X = x), with
the expectation taken over the values for X.

Example 1.1. Consider the random variable (X, Y) with X ∨ Y = 1 and X ∈ {0, 1} and Y =
{0, 1} such that:

(X, Y) =


01 with probability 1/3
10 with probability 1/3
11 with probability 1/3

1



Now, let us calculate the following:

1. H(X) = H(Y) = 1
3 log 3 + 2

3 log 3
2

2. H(Y|X = 0) = 0

3. H(Y|X = 1) = 1
2 log 1

1
2
+ 1

2 log 1
1
2
= 1

4. H(Y|X) = 1
3 · 0 + 2

3 · 1 = 2
3

5. H(X, Y) = 1
3 log 3 + 1

3 log 3 + 1
3 log 3 = log 3

From the above we see that:
H(Y) ≥ H(Y|X)

this is actually always true and we prove this fact below.

Proposition 1.2. H(Y) ≥ H(Y|X)

Proof: We want to show that H(Y|X)− H(Y) ≤ 0. Consider the quantity on the left hand
side.

H(Y|X)− H(Y) = ∑
x

p(x)∑
y

p(y|x) log
1

p(y|x) − ∑
y

p(y) log
1

p(y)

= ∑
x

p(x)∑
y

p(y|x) log
1

p(y|x) − ∑
y

p(y) log
1

p(y) ∑
x

p(x|y)

= ∑
x,y

p(x, y)

(
log

1
p(y|x) − log

1
p(y)

)

= ∑
x,y

p(x, y)

(
log

p(x)p(y)
p(x, y)

)

Now consider a random variable Z that takes value p(x)p(y)
p(x,y) with probability p(x, y). Then

we can use Jensen’s inequality to get:

∑
x,y

p(x, y)

(
log

p(x)p(y)
p(x, y)

)
≤ log

(
∑
x,y

p(x)p(y)
p(x, y)

p(x, y)

)
= log(1) = 0 .

Note however the fact that conditioning on X reduces the entropy of Y is only true on
average over all fixings of X. In particular, in the above example we have H(Y|X = 1) = 1 >
H(Y). But H(Y|X), which is an average over all fixings of X, is indeed smaller than H(Y).
Also, check that above inequality is tight only when X and Y are independent.
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Exercise 1.3. Show that H(Y) = H(Y|X) if and only if X and Y are independent.

Using induction, we can use the chain rule to show that the following also holds for a tuple
of random variables (X1, . . . , Xm).

H(X1, X2, . . . , Xm) = H(X1) + H(X2|X1) + H(X3|X1, X2) . . . H(Xm|X1, . . . , Xm−1) .

Combining this with the fact that conditioning (on average) reduces the entropy, we get
the following inequality which is referred to the sub-additivity property of entropy.

H(X1, X2, . . . , Xm) ≤ H(X1) + H(X2) + H(X3) + · · ·+ H(Xm) .

2 Source Coding Theorem

We begin by recalling the Shannon Code. We considered a random variable X that took
on values a1, a2, . . . , an with probabilities p1, p2, . . . , pn. We wanted to encode the values of
X such that the expected number of bits needed is small. If ℓ1, ℓ2, . . . , ℓn are the number of
bits needed to encode a1, a2, . . . , an, then we saw that a prefix free code exists iff:

n

∑
i=1

2ℓi ≤ 1

Furthermore, we saw that the expected length of the encoding is lower bounded by H(X)
and upper bounded by H(X) + 1 (a code as specified as above, the Shannon code may be
constructed by setting ℓi = ⌈log(1/pi)⌉).

We will now try to improve this upper bound and we will do so by considering multiple
copies of X. The idea is that by amortizing the loss over many symbols, we can start to
approach an expected length equal to the lower bound i.e. the entropy.

The design may be done as follows: Consider m copies of the random variable X, {X1, . . . , Xm ∈
U} and a code C : X m → {0, 1}∗. Let |X |m = N. Now, we know that:

H(X1, . . . , Xm) ≤
N

∑
i=1

pi

⌈
log

1
pi

⌉
≤ H(X1, . . . , Xm) + 1

Let us also assume that the m copies of X are drawn i.i.d. Using this assumption we try to
work out the quantity H(X1, . . . , Xm). Which may be expanded using the chain rule and
independence:

H(X1, . . . , Xm) = H(X1) + H(X2|X1) + · · ·+ H(Xm|X1, . . . , Xm−1)

= H(X1) + H(X2) + · · ·+ H(Xm)

= m · H(X)
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Therefore, we get
E [|C(X1, . . . , Xm)|] ≤ m · H(X) + 1 .

Thus, we used H(X) + 1
m bits on average per copy of X. This leads us to the source coding

theorem.

Theorem 2.1 (Fundamental Source Coding Theorem (Shannon)). For all ε > 0 there exists
a n0 such that for all n ≥ n0 and given n copies of X, X1, . . . , Xn sampled i.i.d., it is possible to
communicate (X1, . . . , xn) using at most H(X) + ε bits per copy on average.

3 Bounding binomial sums using binary entropy

We use the subadditivity property to obtain an upper bound on the number of subsets of
[n] = {1, . . . , m} of size at most k i.e., we need to bound size of the following set

S = {(x1, . . . , xn) ∈ {0, 1}n | x1 + · · ·+ xn ≤ k} .

Of course we can write the following expression for the size of S

|S| =

(
n
0

)
+

(
n
1

)
+ · · ·+

(
n
k

)
,

but how much is the value of the above sum? We will estimate it in terms of the binary
entropy function defined as

H2(p) := p · log
(

1
p

)
+ (1 − p) · log

(
1

1 − p

)
Note that h(p) is the entropy of a random variable X, which takes value 1 with probability
p and 0 with value 1 − p (or vice-versa). This immediately tells us that the maximum
possible value of H2(p) is 1, which is achieved at p = 1/2. The function H2(p) can also
easily be shown to be concave. It is also increasing for p ∈ (0, 1/2) and decreasing for
p ∈ (1/2, 1)

Claim 3.1. The function H2(p) is concave.

Proof: We would like to prove that for any p1, p2, α ∈ [0, 1], we have

H2(α · p1 + (1 − α) · p2) ≥ α · H2(p1) + (1 − α) · H2(p2) .

Consider a pair of binary random variables (X, Y) distributed as follows. X is 0/1 with
probability 1 − α and α respectively. Condited on X = 1, we take Y to be 0/1 with prob-
ability 1 − p1 and p1, and conditioned on X = 0, we we take Y to be 0/1 with probability
1 − p2 and p2. Now, we have H(Y|X) as

H(Y|X) = P [X = 1] · H(Y|X = 1)+P [X = 0] · H(Y|X = 0) = α · H2(p1)+ (1− α) · H2(p2) .
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Also, note that Y is a binary random variable with P [Y = 1] = α · p1 + (1 − α) · p2. So we
can write

H(Y) = H2(α · p1 + (1 − α) · p2) .

Using H(Y) ≥ H(Y|X) now proves the claim.

Exercise 3.2. Prove that the function H2(p) is increasing when p ∈ (0, 1/2). You can also prove
this using H(Y|X) ≤ H(Y) if you like.

We now return to the estimation problem. Let (X1, . . . , Xn) be a uniformly distributed over
S. Thus, we have that H(X1, . . . , Xn) = log |S|. We can also use sub-additivity to say that

log |S| = H(X1, . . . , Xn) ≤ H(X1) + · · ·+ H(Xn) = n · H(X1) ,

where the last equality used the symmetry of the variables X1, . . . , Xn. Now since X1 was
an indicator variable, let us say that it takes value 1 with probability p and value 0 with
probability 1 − p. Then H(X1) = H2(p). Also, we have that X1 + · · · + Xn ≤ k, which
gives by symmetry that p = E [x1] ≤ k/n. Finally, we note that since the function H2(p) is
increasing for p ≤ 1/2, we get H(X1) = H2(p) ≤ H2(k/n). This gives the bound

log |S| ≤ n · H2(k/n) ⇒ |S| ≤ 2n·H2(k/n) .

You can check that the upper bound obtained here is not too bad since the sum is approxi-
mately equal to 2n·H2(k/n)√

2π·k·(1−k/n)
.

4 Cauchy-Schwarz and some generalizations

We now give an information-theoretic proof of the Cauchy-Schwarz inequality. While this
inequality can of course be proved in many other ways, the method described here was
used by Friedgut [Fri04] to prove several interesting generalizations. I highly recommend
taking a look at his paper!

Recall that the (finite version of) Cauchy-Schwarz inequality states that for real numbers
a1, . . . , an and b1, . . . , bn, we have that(

n

∑
i=1

ai · bi

)
≤
(

n

∑
i=1

a2
i

)
·
(

n

∑
i=1

b2
i

)
.

Note that we can assume numbers are non-negative, since the LHS can only decrease oth-
erwise, while the RHS remains unchanged. Also, by continuity of the expressions on both
sides (in the numbers ai, bi) it suffices to prove the inequality for rational rational num-
ber. Finally, since we can scale both sides by the same number, it suffices to only consider
natural numbers a1, . . . , an and b1, . . . , bn.
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Consider disjoint subsets A1, . . . , An ⊆ N, where |Ai| = ai, and similarly, disjoint subsets
B1, . . . , Bn with |Bi| = bi. Let ri denote the rectangle Ai × Bi with ai · bi points. We think of
the rectangles being in the x, y plane with x coordinates is the sets Ai and y coordinates in
the sets Bi. We pick two points random (X1, Y1) and (X2, Y2) as follows:

- Pick a rectangle R with probability proportional to its area i.e.,

P [R = ri] =
ai · bi

∑j aj · bj

- Pick two points (X1, Y1) and (X2, Y2) independently from R.

Note that for the random point (X1, Y1), the distribution is uniform over the set of all points
(and similarly for (X2, Y2)). Also, since the sets are disjoint, specifying any of the variables
X1, Y1, X2, Y2 reveals R, which means that

H(X1, Y1, R) = H(X2, Y2, R) = H(X1, Y1) = H(X2, Y2) = log

(
∑

i
ai · bi

)

Finally, we use the fact that given the choice of the rectangle R, all four random variables
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X1, Y1, X2, Y2 are independent. We get

H(X1, Y1, R) + H(X2, Y2, R) = 2H(R) + H(X1, Y1|R) + H(X2, Y2|R)
= 2H(R) + H(X1|R) + H(Y1|R) + H(X2|R) + H(Y2|R)
= 2H(R) + H(X1, X2|R) + H(Y1, Y2|R)
= H(X1, X2, R) + H(Y1, Y2, R)
= H(X1, X2) + H(Y1, Y2)

≤ log

(
∑

i
a2

i

)
+ log

(
∑

i
b2

i

)
.

Note that the last inequality used the fact that the number of choices for (X1, X2) is ∑i a2
i

and that for (Y1, Y2) is ∑i b2
i . Combining the above, we get

2 log

(
∑

i
ai · bi

)
≤ log

(
∑

i
a2

i

)
+ log

(
∑

i
b2

i

)
,

which yields the Cauchy-Schwarz inequality. This method can also be used to prove inter-
esting generalizations such as(

∑
i,j,k

aij · bjk · cki

)2

=

(
∑
i,j

a2
ij

)
·
(

∑
j,k

b2
jk

)
·
(

∑
k,i

c2
ki

)
.

Take a look at [Fri04] for details.

5 Shearer’s Lemma and Combinatorial Applications

The sub-additivity property of entropy lets us bound the entropy of the tuple (X1, . . . , Xn)
in terms of the individual entropies H(X1), . . . , H(Xn). Shearer’s lemma can be viewed
as a generalization of this statement which lets us obtain better bounds in case we can
estimate the entropy of subsets of random variables containing more than one random
variable.

Lemma 5.1 (Shearer’s Lemma). Let {X1, . . . , Xn} be a set of random variables. For any S ⊂ [n],
let us denote XS = {Xi : i ∈ S}. Let F ⊆ 2[n] be a collection of subsets of [n] with the property
that for all i ∈ [n], we have that |{S ∈ F | S ∋ i}| ≥ t. Then

t · H(X1, . . . , Xn) ≤ ∑
S∈F

H(XS) .
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We will actually prove a more general version of the lemma which can be stated in terms
of a distribution over subsets of [m] such that for each i ∈ [n], we have a lower bound on
the probability that a random subset from the distribution includes i. The lemma below
can easily be seen to imply the version above, by using the uniform distribution on the
collection F .

Lemma 5.2 (Shearer’s Lemma: distribution version). Let {X1, . . . , Xn} be a set of random
variables. For any S ⊂ [n], let us denote XS = {Xi : i ∈ S}. Let D be an arbitrary distribution
on 2[n] (set of all subsets of [n]) and let µ be such that ∀i ∈ [n] PS∼D [i ∈ S] ≥ µ. Then

µ · H(X1, . . . , Xn) ≤ E
S∼D

[H(XS)] .

Exercise 5.3. Check that Lemma 5.2 implies Lemma 5.1. Also check that both these lemmas imply
sub-additivity.

A generalization of Shearer’s lemma was also used in the paper by Friedgut [Fri04], which
is also a great one to read for many interesting applications to analysis and inequalities.
We sketch the proof of one such inequality below, for bounding volumes of convex bodies.
Please take a look at the excellent surveys by Radhakrishnan [Rad03] and Galvin [Gal14]
for a number of interesting combinatorial applications of entropy and Shearer’s lemma. If
you are interested, there is also a delightful paper of Kontoyiannis [?], which shows how
toobtain a somewhat weaker version of the prime number theorem (estimating the number
of primes between 1 and n) using entropy arguments.

5.1 Bounding volumes using projections

Consider a set of points S in (say) three dimensions, such that the projections in the xy, yz
and zx plain contain n1, n2 and n3 points respectively. How many points can there be in
the set S? Note that since many points in S can have the same projection on a plane, the
numbers n1, n2 and n3 can each be much smaller than |S|. However, since two different
points cannot have the same projection in all three planes, we know that each triple of
projections must determine a unique point. This gives

|S| ≤ n1 · n2 · n3 .

It turns out that we can significantly improve this bound using Shearer’s lemma. Let
(X, Y, Z) be a triple of random variables denoting the coordinates of a uniformly sam-
pled point from S. Thus, we have that H(X, Y, Z) = log |P|. Moreover, using Shearer’s
lemma, we also get that

2 · H(X, Y, Z) ≤ H(X, Y) + H(Y, Z) + H(Z, X) ,
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since the family of pairs on the right includes each random variable twice. Also, since
(X, Y) denotes the projection of a random point from S in the xy plane, and total number of
projections is n1, we get that H(X, Y) ≤ log n1. Similarly, H(Y, Z) ≤ log n2 and H(Z, X) ≤
log n3. Combining these estimates gives

2 · log |S| ≤ log n1 + log n2 + log n3 ⇒ |S| ≤
√

n1 · n2 · n3 .

Note that there is nothing special about three dimensions. One can also prove the follow-
ing d-dimensional analogue using the same argument.

Proposition 5.4. Let S ⊆ Rd be a finite set of points in d dimensions, and let S1, . . . , Sd denote
the set of projections orthogonal to each of the d coordinate axes. Then we have

|S| ≤
(

d

∏
i=1

|Si|
)1/(d−1)

.

This can also be used to bound the volume of a body B in d dimensions in terms of the
(d − 1)-dimensional volumes of its projections. One can consider the body to be a union of
axis parallel cubes, with a point at the center of each cube. Then, a limiting argument com-
bined with the above estimate gives the following result known as the Loomis-Whitney
inequality.

Proposition 5.5 (Loomis-Whitney inequality). Let B ⊆ Rd be a measurable body and let
B1, . . . , Bd denote its projections orthogonal to each of the coordinate axes. Then, we have

Vold(B) ≤
(

d

∏
i=1

Vold−1(Bi)

)1/(d−1)

.

5.2 Proof of Shearer’s lemma

We now prove Lemma 5.2
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Proof: The proof of the lemma follows simply from the chain rule for entropy and the fact
that conditioning reduces entropy (on average).

E
S∼D

[H(XS)] = E
S∼D

[
∑
i∈S

H
(

Xi | XS∩[i−1]

)]
by Chain rule

≥ E
S∼D

[
∑
i∈S

H
(

Xi | X[i−1]

)]
H(Xi|XA) ≥ H(Xi|XB) for A ⊂ B

= E
S∼D

[
∑

i∈[n]
1{i∈S} · H

(
Xi | X[i−1]

)]
= ∑

i∈[n]
P

S∼D
[i ∈ S] · H

(
Xi | X[i−1]

)
≥ µ · ∑

i∈[n]
H
(

Xi | X[i−1]

)
= µ · H(X1, . . . , Xm)
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