
Information and Coding Theory Winter 2025

Lecture 16: February 27, 2025
Lecturer: Madhur Tulsiani

1 List-decoding of Reed-Solomon codes

The decoding algorithm in the previous lecture requires the number of errors to be at most
⌊ n−k

2 ⌋, i.e. it requires error rate to be less than roughly 1
2 (1 − k

n) ≤ 1
2 . Of course 1/2 is a

bound on the error rate (in the Hamming model) for any code, since the number of errors
can be at most half the distance.

The notion of list-decoding allows us to toterate more errors, at the cost of producing a
(short) list of multiple codewords when it is not possible to decide on a unique closest
codeword. We will describe the algorithm by Sudan [Sud97], which list-decodes Reed-
Solomon codes up to error rate 1− 2

√
k/n. For an detailed discussion of several results on

list decoding, see the excellent survey by Guruswami [Gur07].

We can view the list decoding algorithm below as a generalization of the unique decoding
algorithm discussed in the previous lecture. For unique decoding (from t errors), we found
polynomials g and e with degrees k − 1 + t and t respectively, such that

yi · e(ai) = g(ai) ∀i ∈ [n] ,

where a1, . . . , an are the evaluation points defining the code, and y1, . . . , yn are the (possibly
corrupted) received values. This can be seen as finding a curve h(X, Y) with degY(h) = 1,
which passes through the points (ai, yi) for all i ∈ [n]. For h(X, Y) = Y · e(X)− g(X), we
proved that Y − f (X) must be a factor of h(X, Y), where f (X) is the polynomial defining
the closest codeword.

In the case of list decoding, we still find a polynomial h(X, Y)passing through all the points
(ai, yi), but allow a larger degree for Y. We will show that for any polynomial f in the
desired error radius, Y − f (X) must be a factor of h(X, Y). We define the algorithm below,
in terms degree parameters dX and dY to be chosen later. Also, note that the algorithm
requires computing all factors of h(X, Y) of the form Y − f (X). This can be done efficiently
(in time poly(q)) though we do not discuss the details here. See Guruswami’s survey for
details of this step [Gur07].

1

List-decoding for Reed-Solomon codes
Input: {(ai, yi)}i=1,...,n

Parameters: dX, dY, t ∈ N

1. Find nonzero h ∈ Fq[X, Y] such that degX(h) ≤ dX, degY(h) ≤ dY and h(ai, yi) = 0
for each i ∈ [n].

2. Compute all factors of h that are of the form Y − f (X).

3. Output all f from Step 2 such that |{i ∈ [n] | f (ai) ̸= yi}| ≤ t.

Lemma 1.1. There exists h(X, Y) that satisfies the conditions in Step 1 of the algorithm, if dX, dY
satisfy (dX + 1) · (dY + 1) > n.

Proof: We observe that finding h is again equivalent to solving a system of linear equa-
tions. By writing h(X, Y) = ∑0≤r≤dX ∑0≤s<dY

cr,sXrYs, the equation h(ai, yi) = 0 for i ∈ [n]
gives n linear equations in the coefficients cr,s’s. Note that there are (dX + 1) · (dY + 1)
unknowns and n equations. Also, cr,s = 0 for all r, s is a solution, since the system is ho-
mogeneous. Thus, if (dX + 1) · (dY + 1) > n, there exist multiple solutions and at least one
of them must be nonzero.

Lemma 1.2. Let h ∈ Fq[X, Y] be a polynomial that satisfies the conditions in Step 1 of the algo-
rithm. Let f ∈ Fq[X] be a polynomial with degree at most k − 1, such that

|{i ∈ [n] | f (ai) = bi}| ≥ n − t > dX + (k − 1) · dY .

Then, (Y − f (X)) | h(X, Y) i.e., Y − f (X) is a factor of h(X, Y).

Proof: Let I = {i ∈ [n] | P(ai) = yi}. Then h(ai, f (ai)) = 0 for all i ∈ I. It follows that the
univariate polynomial h(X, f (X)) has at least |I| roots. But h(X, f (X)) has degree at most
dX + (k − 1) · dY. Since

|I| ≥ n − t ≥ dX + (k − 1) · dY ,

we must have h(X, f (X)) ≡ 0.

It follows that (Y− f (X)) | h(X, Y). Indeed, we can write h(X, Y) = (Y− f (X)) · A(X, Y)+
B(X, Y) where degY(B) < degY(Y − f (X)) = 1. So B(X, Y) does not depend on Y. Now
h(X, f (X)) ≡ 0 implies B(X, Y) = B(X) ≡ 0.

Choice of parameters. It remains to choose the values of the parameters dX, dY and t to
satisfy the conditions for the above lemmas. We can choose dX =

√
n · k and dY =

√
n/k

and t = n − 2
√

n · k, which satisfy the conditions above. Note that the list size is at most
dY =

√
n/k. As an example, if k = ε · n, we can tolerate an error rate of 1 − 2

√
ε, while

producing a list of size
√

1/ε.

2

Exercise 1.3. Show that we can tolerate an even larger amount of error in the above algorithm, by
using a more careful degree bound. Instead of the uniform bound degX(h) ≤ dX, degY(h) ≤ dY,
we take h to be a sum over all monomials of the form XrYs such that r + (k − 1) · s < (n − t) i.e.,
in a single monomial, the degree of X can even be as large as n − t − 1, if (say) s = 0. Show that
we can now take correct t = n −

√
2nk errors.

1.1 A different definition of Reed-Solomon codes

We defined the encoding for Reed-Solomon codes as mapping coefficients for a polynomial
to evaluations. Given m0, . . . , mk−1 ∈ Fq, we defined

f (X) = m0 + m1 · X + m2 · X2 + · · ·+ mk−1 · Xk−1 ,

and defined, for a fixed S = {a1, . . . , an} ⊆ Fq,

Enc(m0, . . . , mk−1) = (f (a1), . . . , f (an)) .

However, by Lagrange interpolation, we can also specify a unique polynomial f of degree
at most k − 1, by specifying its values on k distinct inputs. Consider H = {a1, . . . , ak} ⊂ S.
We now think of the “message” in Fk

q as an arbitrary function h : H → Fq. We then define
f to be the unique polynomial of degree at most k − 1, consistent with these values. By
Lagrange interpolation, we can write f as

f (X) =
k

∑
i=1

h(ai) · ∏
j∈[k]\i

(
X − ai

aj − ai

)
=

k

∑
i=1

h(ai) · δai(X) .

where the polynomials δai(X) above are degree-(k − 1) polynomials satisfying δai(ai) = 1
and δai(aj) = 0 for all j ∈ [k] \ i. For f as defined above, we write

Enc(h) = (f (a1), . . . , f (an)) .

This encoding has the advantage that the message (h(a1), . . . , h(ak)) = (f (a1), . . . , f (ak)) is
actually contained in the encoding. We will extend the above encoding to the case of Reed-
Muller codes, and show that this allows for a very interesting notion of decoding which
we call “local decoding”.

Exercise 1.4. Find the generator matrix for the above encoding, which maps h ∈ Fk
q, to the code-

word (f (a1), . . . , f (an)) as described above.

2 Reed-Muller codes

One limitation of Reed-Solomon code is that it requires large field, in particular, q ≥ n.
Reed-Muller codes are generalization of Reed-Solomon codes that can be defined on any

3

field size, even over F2. Specifically, the Reed-Muller code RMq(d, m) is a linear code over
Fq, where the message (ci1,...,im)0≤i1+···+im≤d is identified with the polynomial

f (X1, . . . , Xm) = ∑
0≤i1+···+im≤d

ci1,...,im · Xi1
1 · · · Xim

m ,

which is a multivariate polynomial of total degree at most d in m. The encoding maps
the coefficients to { f (z1, . . . , zm)}z1,...,zm∈Fq

, i.e. the codeword is the evaluation of f over all
points in Fm

q .

We will actually consider subcode of the Reed-Muller code, which has the property that the
message is contained in the codeword, as we discussed for the alternate Reed-Solomon
code above.

2.1 A subcode of the Reed-Muller code

Fix H ⊆ Fq such that |H| = k, and let h : Hm → Fq be an arbitrary function. As in the
case of Reed-Solomon codes, we will take the encoding of h to correspond to a low-degree
polynomial, which agrees with h on its domain Hm. Concretely, we take

f (X1, . . . , Xm) = ∑
a1,...,am∈H

h(a1, . . . , am) ·
m

∏
i=1

δai(Xi)

= ∑
a1,...,am∈H

h(a1, . . . , am) ·
m

∏
i=1

(
∏

u∈H\ai

(
Xi − ai

u − ai

))

Note that degXi
(f) ≤ k − 1 for each i ∈ [m]. We take the encoding of h to be

Enc(h) = { f (z1, . . . , zm)}z1,...,zm∈Fq
.

As in the case of (the alternate view of) Reed-Solomon codes, this encoding has the prop-
erty that the message is contained in the encoding.

Exercise 2.1. Check that the encoding above is linear in h. Conclude that the code

C =
{
Enc(h) | h : Hm → Fq

}
is a subspace.

The dimension of the above code equals the dimension of the space of functions h : Hm →
Fq, which is km. The block-length of the code equals the number of evaluation points
(z1, . . . , zm), which is qm. Note that the code here not only has a bound on the total degree
of the polynomial f , but also has the restriction that degXi

≤ k − 1 for each i ∈ [m]. It thus
forms a subcode (subspace) of the Reed-Muller code RMq(m · (k − 1), m) with total degree
d = m · (k − 1).

4

2.2 Distance of Reed-Muller Codes

A codeword of the Reed-Muller code is an evaluation of some polynomial f ∈ Fq[X1, . . . , Xm]
over all of Fm

q . Also, since the codes we considered are linear, the distance equals the min-
imum weight of a non-zero codeword, which we denote as wt(f).

wt(f) =
{
(z1, . . . , zm) ∈ Fm

q | f (z1, . . . , zm) ̸= 0
}

.

The weight of any non-zero polynomial (a polynomial which is not identically zero) can be
understood using the following lemma. While this is usually referred to as the Schwartz-
Zippel lemma, or the DeMillo-Lipton- Schwartz-Zippel lemma, it actually has a longer
history as described in (Section 3.1 of) this article by Arvind et al. [AJMR19]. We refer to it
as the polynomial identity lemma.

Lemma 2.2 (Polynomial Identity Lemma). Let f ∈ Fq[X1, . . . , Xm] be a non-zero polynomial
with total degree at most d = c1 · (q − 1) + c2 with c2 < q − 1, then

P
z1,...,zm

[f (z1, . . . , zm) ̸= 0] ≥ 1
qc1

·
(

1 − c2

q

)
.

Note that the above lemma, gives

wt(f) ≥ qm

qc1
·
(

1 − c2

q

)
.

In the subcode considered in Section 2.1, we considered polynomials with degXi
(f) ≤ k− 1

for each i ∈ [m]. In this special case of bounds on the individual degrees, the polynomial
identity lemma has a simpler statement and simpler proof.

Lemma 2.3. Let f ∈ Fq[X1, . . . , Xm] be a non-zero polynomial with degXi
(f) ≤ di for each

i ∈ [m]. Then,

P
z1,...,zm

[f (z1, . . . , zm) ̸= 0] ≥
m

∏
i=1

(
1 − di

q

)
.

Proof: We prove the statement by induction on the number of variables. The case
m = 1 follows from the observation that a univariate non-zero polynomial with degree
at most d, has at most d roots. By factoring out different powers of Xm, we can write
f ∈ Fq[X1, . . . , Xm] as

f (X1, . . . , Xm) =
d

∑
j=0

gj(X1, . . . , Xm−1) · X j
m ,

5

where d ≤ dm is the largest exponent j such that gj(X1, . . . , Xm−1) ̸≡ 0. Using induction,
we then get that

P
z1,...,zm

[f (z1, . . . , zm) ̸= 0]

≥ P
z1,...,zm

[
f (z1, . . . , zm) ̸= 0

∧
gd(z1, . . . , zm−1) ̸= 0

]
≥ P

z1,...,zm
[gd(z1, . . . , zm−1) ̸= 0] · P

zm

[
d

∑
j=0

gj(z1, . . . , zm−1) · zj
m ̸= 0 | gd(z1, . . . zm−1 ̸= 0)

]

≥
m−1

∏
i=1

(
1 − di

q

)
·
(

1 − d
q

)
≥

m

∏
i=1

(
1 − di

q

)
.

Another special case, with a similar proof, is when the total degree d is smaller than q − 1.

Lemma 2.4. Let f ∈ Fq[X1, . . . , Xm] be a non-zero polynomial with total degree d < q − 1 Then,

P
z1,...,zm

[f (z1, . . . , zm) ̸= 0] ≥ 1 − d
q

.

Proof: As before, we use induction on the number of variables, and write

f (X1, . . . , Xm) =
d′

∑
j=0

gj(X1, . . . , Xm−1) · X j
m ,

where d′ ≤ d is the largest exponent j such that gj(X1, . . . , Xm−1) ̸≡ 0. We can write the
probability of f being 0 as (omitting the input variables in the expressions below)

P
z1,...,zm

[f (z1, . . . , zm) = 0]

= P [gd′ = 0] · P [f = 0 | gd′ = 0] + P [gd′ ̸= 0] · P [f = 0 | gd′ ̸= 0]

≤
(

d − d′

q

)
· 1 + 1 ·

(
d′

q

)
=

d
q

where we used induction, and the fact that the total degree of gd′ is at most d − d′.

Exercise 2.5. Prove the general polynomial identity lemma (Lemma 2.2) using induction on the
number of variables.

6

2.3 Local Correction of Reed-Muller codes

Let { f (z1, . . . , zm)}z1,...,zm∈Fq be a Reed-Muller codeword and assume that α fraction of the
codeword is corrupted and instead we observe { f̃ (z1, . . . , zm)}z1,...,zm∈Fq . Therefore, we
have:

P
z1,...,zm∈Fq

[
f (z1, . . . , zm) = f̃ (z1, . . . , zm)

]
≥ 1 − α

Decoding the codeword would correspond to recovering the values f (z1, . . . , zm) for all
z1, . . . , zm ∈ H. However, suppose we are only interested in the value at one point (z1, . . . , zm).
Of course, decoding the full codeword would also give the value at the point of interest.
However, the running time may be polynomial in qm which is the length of the codeword.

Reed-Muller codes have the interesting property that for any point (z1, . . . , zm), we can re-
cover the value f (z1, . . . , zm) (with high probability) in time poly(q, m). Note in particular
that the dependence on m is polynomial instead of the exponential dependence we would
get if we tried to recover the entire codeword. Also, we need to only to read the value of
f̃ at O(q) randomly chosen points. Thus, we don’t even read the entire received word. If
he consider the subcode defined in Section 2.1 such that the message is contained in the
codeword f , then we can also recover any position of the message this way.

Instead of stating a general result, we illustrate the technique via an example.

Local correction example. Let f be a codeword of the subcode considered in Section 2.1,
and let q ≥ 5km (where k = |H|). By Lemma 2.3, we know that the distance is at least 4

5 qm.
Assume that α = 1

10 fraction of the codeword is corrupted. Given z = (z1, . . . , zm) we want
to find the value f (z1, . . . , zm). Pick y ∈ Fm

q at random where y = (y1, . . . , ym) and define
ℓy(t) = z + ty where t ∈ Fq. Note that ℓy(0) = z.

Consider the univariate polynomial gy(t) ∈ Fq[t] defined as

gy(t) = f (ℓy(t)) = f (z + t · y)

Note that the degree of gy is at most (k − 1) · m, and our goal is to find the value gy(0),
where we are allowed to work with a randomly chosen y The idea of the decoding is
that for most random y, we will end up with a univariate polynomial gy(t), where the
amount of error is small enough that we can use Reed-Solomon decoding for univariate
polynomials. Specifically, we have that for all t ̸= 0

P
y

[
f̃ (z + t · y) ̸= f (z + t · y)

]
≤ 1

10
.

Thus, we can write

E
y

[∣∣{t ∈ Fq \ {0} | f̃ (z + t · y) ̸= f (z + t · y)
}∣∣] ≤ q − 1

10
,

7

which implies by Markov’s inequality that

P
y

[∣∣{t ∈ Fq \ {0} | f̃ (z + t · y) ̸= f (z + t · y)
}∣∣ ≥ 2(q − 1)

5

]
≤ 1

4
.

Thus, we have that with probability at least 3/4 over the choice of y, the value of gy(t) is
correct in at least 3(q− 1)/5 positions. We can then use Reed-Solomon decoding to recover
the polynomial gy(t) for a randomly chosen y, and return gy(0).

References

[AJMR19] Vikraman Arvind, Pushkar S. Joglekar, Partha Mukhopadhyay, and S. Raja.
Randomized polynomial-time identity testing for noncommutative circuits.
Theory of Computing, 15(7):1–36, 2019. URL: http://www.theoryofcomputing.
org/articles/v015a007, doi:10.4086/toc.2019.v015a007. 5

[Gur07] Venkatesan Guruswami. Algorithmic results in list decoding. Found. Trends
Theor. Comput. Sci., 2(2):107–195, January 2007. URL: http://dx.doi.org/10.
1561/0400000007, doi:10.1561/0400000007. 1

[Sud97] Madhu Sudan. Decoding of Reed Solomon codes beyond the error-correction
bound. J. Complexity, 13(1):180–193, 1997. URL: http://dx.doi.org/10.1006/
jcom.1997.0439, doi:10.1006/jcom.1997.0439. 1

8

http://www.theoryofcomputing.org/articles/v015a007
http://www.theoryofcomputing.org/articles/v015a007
https://doi.org/10.4086/toc.2019.v015a007
http://dx.doi.org/10.1561/0400000007
http://dx.doi.org/10.1561/0400000007
https://doi.org/10.1561/0400000007
http://dx.doi.org/10.1006/jcom.1997.0439
http://dx.doi.org/10.1006/jcom.1997.0439
https://doi.org/10.1006/jcom.1997.0439

	List-decoding of Reed-Solomon codes
	A different definition of Reed-Solomon codes

	Reed-Muller codes
	A subcode of the Reed-Muller code
	Distance of Reed-Muller Codes
	Local Correction of Reed-Muller codes

