
Information and Coding Theory Winter 2025

Lecture 15: February 25, 2025
Lecturer: Madhur Tulsiani

1 Error-correcting codes for the Hamming model

We now begin our discussion of codes for the Hamming model of errors, where the er-
rors are adversarial in nature, instead of being introduced by a stochastic channel. When
sending n symbols x1, x2, . . . , xn from X n across a channel, up to t of these symbols may
be corrupted (but not lost) in some arbitrary manner. There is no way to know which of
the symbols have been corrupted, and which symbols were transmitted correctly. We wish
to design encoding and decoding schemes, which can recover the intended transmission
x = (x1, . . . , xn)) from up to t errors. The number t will be treated as a parameter, and the
goal will be to design codes which can correct as many (adversarial) errors as possible.

Remark 1.1. You may have noticed that we implicitly assumed that the input alphabet X for the
channel is equal to the output alphabet Y . Throughout our treatment of the adversarial error model,
we will indeed assume that the input x and the output y for the channel, are both length-n sequences
over the same alphabet X . Moreover, we will also think of the message space as being X k, so that a
code C ⊆ X n with |C| = |X |k can be identified (via an arbitrary bijection) with the encoding map
Enc : X k → X n. As in the last lecture, if Enc(w) = x is transmitted and y ∈ X n is received (with
at most t errors) we will restrict our focus to on finding x. Since the codes will design will be linear,
it will be simple to recover w from x.

The parameter which governs how many errors a code can correct is known as the distance
of the code. Before defining distance of a code, we recall that the Hamming distance of
two finite sequences x, y ∈ X n for any finite X , is the number of positions in which the
sequences differ. Denoting the Hamming distance of x and y by ∆(x, y), we can write

∆(x, y) := {i ∈ [n] | xi ̸= yi} .

Exercise 1.2. Check that Hamming distance defines a metric, i.e., it is symmetric, ∆(x, y) > 0 for
x ̸= y, and it satisfies the triangle inequality

∆(x, y) ≤ ∆(x, z) + ∆(z, y) .

We now define the distance of a code, as the Hamming distance between the closest pair
of codewords.

1

Definition 1.3. Let C ⊆ X n be a code. We define the distance of a code ∆(C) as

∆(C) := min
x,y∈C
x ̸=y

∆(x, y) .

The distance can be used to understand the number of errors one can correct. Note that
there are no probabilities in the error correcting model. Thus, we take the meaning of
“correcting” y to finding the closest x0 ∈ C i.e., x0 = argminz∈C(∆(y, z)). The questions is
if this correctly recovers the x that was sent (and corrupted to y by at most t errors).

Proposition 1.4. A code C ⊆ X n can correct t errors if and only if ∆(C) ≥ 2t + 1.

Proof: First, we prove the reverse direction. If ∆(C) ≥ 2t + 1, then ∆(C)
2 > t. For each

codeword x ∈ C let define the Hamming ball of radius r as

B(x, r) = {z ∈ X n | ∆(x, z) ≤ r} .

In particular consider the case when we let r = t. Notice that for two distinct x, x′ ∈ C,
we must have B(x, t) ∩ B(x′, t) = ∅, since otherwise, ∆(x, x′) ≤ 2t < ∆(C) by triangle
inequality. Now, suppose a codeword x is corrupted in t positions to the string y. By the
above argument, B(x, t) is the unique Hamming ball around a codeword, in which y is
contained. By symmetry of the Hamming distance, given y, we can decode y to the unique
x0 ∈ C such that x0 ∈ B(y, t).

Now, we prove the forward direction. Suppose the codeword x ∈ C is corrupted in t bits
to y i.e., ∆(x, y) = t. Since we can correct up to t errors, we know that we can find x0 ∈ C
such that x0 = argminz∈C(∆(y, z)). Moreover, we want x0 to be equal to x. Thus, we have
that

δ(z, y) > δ(x, y) = t ∀z ∈ C .

However, if we have ∆(x, z) = ∆(C) for codewords x, z ∈ C, we can always find y such
that δ(x, y) = t and δ(z, y) = ∆(C)− t. Combining it with the above, we get ∆(C)− t > t,
which implies ∆(C) ≥ 2t + 1.

1.1 Rate-distance tradeoffs

Since the number of errors we can correct depends on the distance, and we can always
achieve distance ∆ if we repeat every symbol of the message ∆ times (why?), the more
interesting question is how efficiently we can get to distance ∆. Since a code C can be used
to encode |C| messages, the rate is defined as log2(|C|)/n, or sometimes as log|X |(|C|)/n,

which is k/n if |C| = |X |k. There are many known bounds which yield rate-distance
tradeoffs, and different ones are better better in different parameter settings (depending
on the alphabet size |X |, distance etc.). While we will only discuss two bounds here to

2

illustrate some basic ideas, you can find many more bounds in [GRS12]. We will state
these in terms of the size of the code |C|, and they can easily be re-stated in terms of either
of the above notions of rate (which just differ by a multiplicative log |X |).

1.1.1 Hamming bound

We start with a special case of a code over X = F2, with distance 3, and then generalize
to distance-d codes over any alphabet X . Note that the proof uses essentially the same
reasoning as in Proposition 1.4.

Proposition 1.5. Let C ⊆ Fn
2 be any distance-3 code, i.e., ∆(C) ≥ 3. Then

|C| ≤ 2n

n + 1

Proof: For each z ∈ C, let B(z, 1) be the ball of size n+ 1 consisting of z and the n elements
in Fn

2 (not in C), each at distance 1 from z. Then the balls formed by the codewords in C
must be disjoint, since if B(z, 1) and B(z′, 1) intersect, then ∆(z, z′) ≤ 2 by triangle inequal-
ity. For each codeword z ∈ C, we have |B(z, 1)| = n + 1 codes, so |C| · (n + 1) ≤ 2n.

Example 1.6. Recall our example of the Hamming code C ⊆ F7
2 given by the parity check matrix

H =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

We proved that it can correct one error, and thus has ∆(C) ≥ 3 (by Proposition 1.4). We also

argued that dim(C) = 4, which gives |C| = 24 =
27

7 + 1
. Therefore, this is an example of an

optimal distance-3 code.

The bound can be generalized to codes over any finite alphabet X . As in the case of dis-
tance 3, we will use the fact that the size of a ball B(x, r) is the same for all x ∈ X n (like it
was n + 1 in the above case) since it only depends on the number of ways in which up to r
symbols in x can be changed.

Theorem 1.7 (Hamming Bound). Let C ⊆ X n be any code with ∆(C) ≥ d. Then

|C| ≤ |X |n∣∣∣B(· , ⌊ d−1
2 ⌋)

∣∣∣ ,

where |B(· , r)| denotes the size of a ball B(x, r), which is the same for all x ∈ X n.

3

Proof: As above, the balls B(x, r) and B(x′, r) must be disjoint for r = ⌊ d−1
2 ⌋, and x, x′ ∈ C.

Thus, we get |C| · |B(·, r)| ≤ |X |n.

Remark 1.8. The Hamming bound also gives us a bound on the rate of the code in terms of entropy.
Let X = F2, d = δn for δ ≤ 1

2 , and let |C| = 2k. Since |B(·, r)| = ∑r
i=1 (

n
i) ≥

1
n · 2n·H2(

r
n) for

r ≤ n
2 (why?), we have

2k ≤ n · 2n−H2(δ/2) ⇒ k
n

≤ 1 − H2(δ/2) + o(1) .

1.1.2 Singleton bound

While the Hamming bound is a good bound for codes over small alphabets, the following
is a better bound when the alphabet size is large.

Theorem 1.9 (Singleton Bound). Let C ⊆ X n be a distance-d code, with |C| ≥ |X |k. Then

d ≤ n − k + 1

Proof: Let Cr ⊆ X r denote the set of first r coordinates of all codewords in C ⊆ X n.
Taking r = n − d + 1, we see that any two codewords must differ in at least one of the first
r = n − d + 1 coordinates, since ∆(C) ≥ d, and the remaining n − r = d − 1 coordinates
can account for at most d − 1 differences. Thus, we get

|X |n−d+1 ≥ |Cn−d+1| = |C| ≥ |X |k ,

which implies d ≤ n − k + 1.

We will later see Reed-Solomon codes, which achieve the singleton bound (and use a large
alphabet).

1.2 Basics of finite fields

The codes we will design will be linear codes over some finite field Fq. We recall below
some of the properties of finite fields that we will need. As before, we will restrict to the
case when q is a prime number, so that Fq = {0, . . . , q − 1}, with addition and multiplica-
tion defined modulo q.

- Fn
q is a vector space over the field Fq. Note this is not an inner product space.

- Fermat’s little theorem: aq ≡ a mod q, for all a ∈ {0, . . . , q − 1}.

4

- The set of all polynomials in a single variable X, over Fq, is defined as

Fq[X] :=
{

c0 + c1 · X + · · ·+ cq−1 · Xq−1 | c0, . . . , cq−1 ∈ Fq

}
.

Note that the degree (highest power of x with a non-zero coefficient) is never more
than q − 1 (why?) We will also use the notation F≤d

q [X] to denote univariate polyno-
mials in X, with degree at most d

- A polynomial of degree at most d, which is not identically zero, has at most d roots.

- Lagrange interpolation: Given distinct a1, . . . , ad+1 ∈ Fq and any b1, . . . , bd+1 ∈ Fq,
the unique polynomial f with degree at most d, satisfying f (ai) = bi for all i ∈ [d+ 1],
is given by

f (x) =
d+1

∑
i=1

bi · ∏
j ̸=i

(
x − aj

ai − aj

)
.

Distance of linear codes over finite fields. Recall that a linear code C ⊆ Fn
q was defined

to be a subspace of Fn
q . The distance of linear codes can also be characterized in terms of

the number of non-zero entries in any z ∈ C \ {0}.

Exercise 1.10. For z ∈ Fn
q , let wt(z) = |{i ∈ [n] | zi ̸= 0}|. Prove that for a linear code C

∆(C) = min
z∈C

wt(z) .

2 Reed-Solomon codes

We now consider an important family of (linear) codes known as the Reed-Solomon codes.
These are optimal codes which can achieve a very large distance. However, they have a
drawback that they need the field size q to be at least as large as the block-length n.

Definition 2.1 (Reed-Solomon Code). Assume q ≥ n and fix S = {a1, . . . , an} ⊆ Fq, distinct
s.t. |S| = n. For each message (m0, . . . , mk−1) ∈ Fk

q, consider the polynomial fm(X) = m0 + m1 ·
X + · · ·+ mk−1Xk−1. Then the Reed-Solomon Code is defined by its encoding as:

C(m0, . . . , mk−1) = (fm(a1), . . . , fm(an)).

Alternatively, we can also define the code directly as the subspace

C =
{
(f (a1), . . . , f (an)) | f ∈ F

≤(k−1)
q [X]

}
.

Let’s compute the distance of the Reed-Solomon Code:

5

Claim 2.2. ∆(C) ≥ n − k + 1.

Proof: We use the characterization from Exercise 1.10. Let (f (a1), . . . , f (an)) ∈ C be a
codeword for some f ∈ F

≤(k−1)
q [X]. We have

wt(f) = wt((f (a1), . . . , f (an))) = |{i ∈ [n] | f (ai) ̸= 0}| .

Since f has degree at most k − 1, the number of points where it’s zero is at most k − 1
points, which gives wt(f) ≥ n − (k − 1).

Remark 2.3. The Reed-Solomon Code is a linear code, as can be seen from the encoding map

C(m0, . . . , mk−1) =

 1 a1 a2
1 . . . ak−1

1
...

...
...

. . .
...

1 an a2
n . . . ak−1

n

m0
m1
...

mk−1

2.1 Unique decoding of Reed-Solomon codes

Given a codeword of Reed-Solomon code of the form (f (a1), . . . , f (an)) for some f ∈ F,
if the values at t of the points ai were corrupted, but we knew the locations of the corrup-
tions, we can always recover f by Lagrange interpolation, as long as the number of correct
values n − t is at least k. The important idea in the decoding algorithm is to note that
the information about the location of the errors can also be represented via a low-degree
polynomial.

Let (f (a1), . . . , f (an)) be a codeword, and let (y1, . . . , yn) be a received word with at most
t errors. We define the error locator polynomial e(X) to a polynomial of degree at most t
that satisfies

yi ̸= f (ai) ⇒ e(ai) = 0 .

Note that e needs to have degree at most t, by Lagrange interpolation. Also note that we
may not know f , and hence may not know the error-locator polynomial e. However, the
algorithm will try to find the polynomial e, as well as the correct f corresponding to the
codeword, as part of the decoding procedure.

The above definition implies that

yi · e(ai) = f (ai) · e(ai) ∀ai ∈ S .

Let g the polynomial g(X) := f (X) · e(X). The following algorithm by Welch and Berlekemp [WB86]
finds the polynomials e and g defined above, using these to to decode a message with at
most ⌊∆(C)−1

2 ⌋ = ⌊ n−k
2 ⌋ errors.

6

Unique decoding for Reed-Solomon codes

Input: {(ai, yi)}i=1,...,n

1. Find e, g ∈ Fq[X] such that E ̸≡ 0, deg(e) ≤ t, deg(g) ≤ k − 1 + t

∀i ∈ [n] g(ai) = yi · e(ai) .

2. Output g
e .

We first observe that Step 1 in the algorithm can be implemented by solving system of
linear equations. Let e(X) = e0 + e1 · X + · · · + et · Xt and g(x) = g0 + g1 · X + · · · +
gk−1+t · Xk−1+t. Then for each given (ai, yi), the equation g(ai) = yi · e(ai) is linear in
variables e0, . . . , et and g0, . . . , gk−1+t. Note that such system is homogeneous and hence it
always has a trivial solution. We need to show that there is a solution with nonzero e.

Lemma 2.4. There exists (E, Q) that satisfies the conditions in Step 1 of the algorithm.

Proof: Let I = {i ∈ [n] | f (ai) ̸= yi} and e∗ = ∏i∈I(X − ai) (we take e∗ ≡ 1 if I is empty).
Let g∗ = f · e∗. Then for all i ∈ [n], we have yie∗(ai) = f (ai) · e∗(ai) = g∗(ai). Also, e∗ ̸≡ 0
by construction, and satisfies deg(e∗) = |I| ≤ t. Also, since deg(f) ≤ k − 1, we gave
deg(g∗) ≤ deg(f) + deg(e∗) ≤ k − 1 + t.

If the above polynomials e∗, g∗ were a unique nonzero solution to the linear system in Step
1, then Step 2 outputs the correct polynomial, since g∗/e∗ = f . But in general there can be
more than one such solution. The following lemma guarantees the correctness of Step 2.

Lemma 2.5. For any two solutions (g1, e1) and (g2, e2) that satisfy the conditions in Step 1,

g1

e1
=

g2

e2
.

Proof: It suffices to show g1 · e2 = g2 · e1. Indeed, since they satisfy the equation g(ai) =
yi · e(ai) for each i ∈ [n], we have

(g1 · e2)(ai) = yi · e1(ai)e2(ai) = (e1 · g2)(ai)

for each i ∈ [n]. Thus, the polynomial g1 · e2 − g2 · e1 is 0 on at least n points. However, its
degree is bounded by (k − 1 + t) + t = k + 2t − 1, which is at most n − 1 for t ≤ ⌊ n−k

2 ⌋.
Thus, the polynomial g2 · e1 − g1 · e2 must be identically zero, and we have g1 · e2 = g2 · e1
as desired.

7

References

[GRS12] Venkatesan Guruswami, Atri Rudra, and Madhu Sudan. Essential Cod-
ing Theory. 2012. URL: https://cse.buffalo.edu/faculty/atri/courses/
coding-theory/book/index.html. 3

[WB86] L.R. Welch and E.R. Berlekamp. Error correction for algebraic block codes, De-
cember 30 1986. US Patent 4,633,470. URL: http://www.google.com/patents/
US4633470. 6

8

https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/index.html
https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/index.html
http://www.google.com/patents/US4633470
http://www.google.com/patents/US4633470

	Error-correcting codes for the Hamming model
	Rate-distance tradeoffs
	Hamming bound
	Singleton bound

	Basics of finite fields

	Reed-Solomon codes
	Unique decoding of Reed-Solomon codes

