
Information and Coding Theory Winter 2025

Lecture 13: February 18, 2025
Lecturer: Madhur Tulsiani

1 Achieving capacity for the binary symmetric channel

We will show next that a random collection of codewords (called codebook or simply code)
can achieve capacity for the binary symmetric channel BSC(p). Recall that the capacity for
the channel is 1 − H2(p). We will show that for every ε > 0, there is a sequence of codes
with rate at least 1 − H2(p) − ε and vanishing probability of error. We can assume that
p < 1/2 (why?)

The code construction. For parameters R to be chosen later, let M = 2nR. We define the
codewords, the maps Enc and Dec as below. We will use ∆(x, y) for x, y ∈ {0, 1} to denote
the Hamming distance, i.e., the number of positions in which the two strings differ.

- Codewords: Select M independent random codewords x1, . . . , xM ∈ {0, 1}n with
each bit of each codeword chosen independently and uniformly at random in {0, 1}.
Here we are using the fact that for BSC(p), the distribution P(X) maximizing the
mutual information is uniform on {0, 1}. For the case of general channels and alpha-
bet X , each symbol is chosen independently from the distribution P(X) maximizing
the mutual information I(X; Y).

- Encoding: For each w ∈ [M], define Enc(w) = xw (the w-th codeword).

- Decoding: Given y ∈ {0, 1}n, define Dec(y) as

Dec(y) =

{
w if ∃ unique w ∈ [M] s.t. ∆(xw, y) ≤ (p + δ) · n

arbitrary otherwise
.

Note that we will always count the second case towards the error probability, so we
don’t care how the decoding is defined there.

Before analyzing the error probability, we note that the noise in BSC(p) can be written a
nice form. For input and output sequences x and y, we can write y = x + z mod 2, where
z ∈ {0, 1}n is a sequence each bit independently 1 with probability p and 0 with probability

1



1 − p. We will refer to this distribution for each bit of z as the Bernoulli distribution with
parameter p, denoted Bern(p). We thus have z ∼ (Bern(p))n.

We now analyze the expected probability of error for a random collection of codewords C,
chosen as above. Obtaining a bound on the error probability (for each n) will show that
there exists a good collection of codewords for each n, although we don’t explicitly know
what this code is. We will discuss explicit constructions in the next lecture. We now prove
the following.

Claim 1.1. Let C be random code constructed as above. Then

E
C
[pe] ≤ n · 2−n·D(p+δ∥p) + 2nR · n · 2−n·D(p+δ∥ 1

2 ) ,

where D(p∥q) denotes D(Bern(p)∥Bern(q)) as usual.

Proof: We get

E
C
[pe] = E

C

[
P
[
Ŵ ̸= W

]]
= E

C

[
∑

w∈[M]

1
M

· P
[
Ŵ ̸= w|W = w

]]
.

By symmetry in the code construction, we can say that EC

[
P
[
Ŵ ̸= w|W = w

]]
is the

same for all w ∈ [M]. Replacing all these by the case for w = 1, we get

E
C
[pe] = E

C

[
P
[
Ŵ ̸= 1|W = 1

]]
.

We consider two cases in which we can have an error: either the output y of the channel
was too far from the input x1, or ∆(xw, y) ≤ (p + δ) · n for some other w > 1. Thus, we
have

E
C
[pe] ≤ E

C
[P [∆(x1, y) > (p + δ) · n]] + ∑

w>1
E
C
[P [∆(xw, y) ≤ (p + δ) · n]]

For a fixed x1, let y = x1 + z mod 2, where z ∼ Bern(p) is independent of x1. The event
∆(x1, y) > (p + δ) · n can be written in terms of the “type” Pz of z as Pz ∈ Π, where
Π = {Bern(p′) | p′ > p + δ}. By Sanov’s theorem, we then have that for each fixed x1

P
y
[∆(x1, y) > (p + δ) · n] ≤ n · 2−n·D(p+δ∥p) .

For the second term, we use the fact that for each y (which may depend on x1), xw is
independent of y for all w > 1 (since codewords are chosen independently). Now defining
z so that y + xw = z mod 2, we get that z ∼ (Bern(1/2))n (why?) For this z, we can now

2



write the even ∆(xw, y) ≤ (p + δ) · n as Pz ∈ Π′, where Π′ = {Bern(p′)|p′ ≤ p + δ}.
Applying Sanov’s theorem again, we get that

P
xw
[∆(xw, y) ≤ (p + δ) · n] ≤ n · 2−n·D(p+δ∥ 1

2 ) .

Combining the above bounds, we get

E
C
[pe] ≤ n · 2−n·D(p+δ∥p) + ∑

w>1
n · 2−n·D(p+δ∥ 1

2 ) ≤ n · 2−n·D(p+δ∥p) + 2nR · n · 2−n·D(p+δ∥ 1
2 ) ,

as claimed.

To analyze the bound, and compare it to the channel capacity 1 − H2(p), we note that
D(p + δ∥ 1

2 ) = 1 − H2(p + δ). Check that ∀ε > 0, there exists δ > 0 such that H2(p + δ) ≤
H2(p) + ε. Using a δ such that H2(p + δ) ≤ H2(p) + ε/2, we get that

E
C
[pe] ≤ n · 2−n·D(p+δ∥p) + 2nR · n · 2−n·(1−H2(p)−ε/2) ,

which tends to zero for R = (1 − H2(p)− ε). Thus, for every ε > 0, we have a sequence of
codes (as n → ∞) with rate at least (1 − H2(p)− ε), and p(n)e → 0.

Exercise 1.2. For R = 1 − H2(p)− ε in the above proof, let n0(ε) be the smallest n (block-length)
such that the probability of error p(n)e → 0 for n ≥ n0(ε). Check that n0(ε) = O(1/ε2) suffices in
the above proof.

2 Linear Codes

A linear code C ⊆ Fn
q is a subspace of Fn

q , viewed as a vector space over the finite field
Fq. We will always take q to be a prime number, with addition and multiplication in Fq
defined modulo q (although the discussion can also be extended to the case when q is a
prime power). If dim(C) = k, we can think of C as encoding a message in Fk

q by linearly
mapping it to an element x ∈ C. Overloading notation to denote Enc(w) ∈ C by C(w), the
encoding map C : Fk

q → Fn
q satisfies

C(α · u + β · v) = α · C(u) + β · C(v) ∀ u, v ∈ Fk
q, α, β ∈ Fq .

Since a linear encoding is a linear map from a finite dimensional vector space to another,
we can write it as a matrix of finite size. That is, there is a corresponding G ∈ Fn×k

q s.t.
C(w) = Gw for all w ∈ Fk

q. This matrix is referred to as a generator matrix for the code C.

If the encoding map is injective (which is the bare minimum for a good code), then the
rank of G must be k (otherwise there exist u, v ∈ Fk

q such that Gu = Gv). Hence, the null
space of GT has dimension n − k. This defines another useful matrix, known as the parity
check matrix of the code.

3



Definition 2.1 (Parity Check Matrix). Let b1, . . . , bn−k ∈ Fn
q be a basis for the null space of GT

corresponding to a linear code C. Then H ∈ F
(n−k)×n
q , defined by

HT =
[

b1 b2 . . . bn−k
]

is called a parity check matrix for C.

Remark 2.2. As defined above, the generator and parity-check matrices for a code are not unique.
However, the column span of G is unique (is equal to C), and so is the row-span of H. In many
cases however, there is a canonical definition of the generator or parity-check matrix based on the
construction of the code, which may be referred to as the generator or parity-check matrix.

Since GT HT = 0 ⇔ HG = 0, we have (HG)w = 0 for all x ∈ Fk
q, i.e., Hx = 0 for all x ∈ C.

Moreover, since the columns of HT are a basis for the null-space of GT, we have that

x ∈ C ⇔ Hx = 0 .

So the parity check matrix gives us a way to quickly check a codeword, by checking the
parities of some bits of x (each row of H gives a parity constraint on x). Also, one can
equivalently define a linear code by either giving G or the parity check matrix H.

Note that for linear codes, encoding w ∈ Fk
2 to the codeword Gw ∈ C can always be done

in polynomial time, by simply multiplying with the matrix G. Also, given x ∈ C, one can
always find w ∈ Fk

2 such that Gw = x, either by Gaussian elimination, or (equivalently) by
multiplying x = Gw by an appropriate matrix G∗ such that G∗Gw = w for all w ∈ Fk

2. Since
we will only be concerned with polynomial time decoding in our discussion of codes, we
can view the decoding problem as: given y which is a corruption of x, find x. The problem
of going from x ∈ Fn

2 to w ∈ Fk
2 can always be solved for linear codes, as outlined above.

Of course, if one is interested in a more fine-grained analysis of the decoding complexity,
one needs to look carefully at the structure of the matrix G∗, but we will restrict our notion
of efficiency to polynomial time.

2.1 Hamming Code

Consider the following code from F4
2 to F7

2, known as the Hamming Code.

Example 2.3. Let C : F4
2 → F7

2, where

C(x1, x2, x3, x4) = (x1, x2, x3, x4, x2 + x3 + x4, x1 + x3 + x4, x1 + x2 + x4).

Note that each element of the image is a linear function of the xi’s, i.e., one can express C with

4



matrix multiplication as follows:

C(x1, x2, x3, x4) =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 1 1
1 0 1 1
1 1 0 1




x1
x2
x3
x4



Example 2.4. The parity check matrix of our example Hamming Code is:

H =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


Note that the ith column is the integer i in binary. One can easily check that HG = 0.

Now suppose x = (x1, . . . , x7)T is our codeword and we make a single error in the ith entry.
Then the output codeword with the error is

x + ei =


x1
...

xi
...

x7

+


0
...
1
...
0


and H(x + ei) = Hx + Hei = Hei = Hi, the ith column of H, which reads i in binary. So this
is a very efficient decoding algorithm just based on parity checking. Thus, the Hamming
code can correct one arbitrary error in any position. One can generalize the Hamming code
to larger message and block lengths, we can create a parity matrix H ∈ F

(n−k)×n
2 , where

the ith column reads i in binary.

5


	Achieving capacity for the binary symmetric channel
	Linear Codes
	Hamming Code


