
Information and Coding Theory Winter 2025

Lecture 1: January 7, 2025
Lecturer: Madhur Tulsiani

1 Administrivia

This course will cover some basic concepts in information and coding theory, and their
applications to statistics, machine learning and theoretical computer science.

- The course will have 4 homeworks (60 % of the grade) and a final (40 %). The home-
works will be posted on the course homepage and announced in class, and will be
due about 7-10 days after they are posted.

- The pre-requisites for the course are familiarity with discrete and continuous proba-
bility and random variables, basics of analysis and linear algebra. Some knowledge
of finite fields will help with the coding theory part though we will briefly review
the relevant concepts from algebra.

- We will not follow any single textbook, though the book Elements of Information The-
ory by T. M. Cover and J. A. Thomas is a good reference for most of the material we
will cover. The “Resources” section on the course page also contains links to some
other similar courses.

2 A quick reminder about random variables and convexity

2.1 Random variables

Let Ω be a finite set. Let µ : Ω → [0, 1] be a function such that

∑
ω∈Ω

µ(ω) = 1.

We often refer to Ω as a sample space and the function µ as a probability distribution on this
space. When Ω is not finite, µ may need to be replaced by an object called a probability
measure (we will discuss this later). Ω and µ are together said to define a probability space
(for infinite Ω, pobability spaces need an additional component called a σ-algebra).

1

A real-valued random variable over Ω is any function X : Ω → R. We define

E [X] = ∑
ω∈Ω

µ(ω) · X(ω) .

We will also think of a random variable X as given by its distribution. If X is the (finite)
set of values taken by X, we can think of the probability distribution on X given by

p(x) = P [X = x] = ∑
ω:X(ω)=x

µ(ω) ,

for all values x ∈ X .

A word on notation

Note that a random variable X is defined simply as a function on Ω, and the distribution
of X is induced by the distribution (or measure) µ on Ω. We use the notation P(X) to
denote the distribution P for the random variable X. Note that changing the underlying
probability space can result in a different distribution (say) Q(X) for the same function X.

In information theory notation, it is common to only talk of distributions P, Q, if they are
for the same X which is clear from context. Similarly, it is common to define quantities
(such as entropy) which depend on the distribution, simply in terms of random variables
X, Y when the underlying probability space is fixed. When we need to talk of multiple
random variables, and also of multiple distributions for the same variable X, we will use
the more explicit notation P(X).

We will use uppercase letters X, Y, Z for random variables, lowercase letters x, y, z to de-
note values for these random variables, and caligraphic letters X ,Y , cZ to denote the sets
of possible values for random variables (also known as the support of a random variable).
We will also use uppercase letters P, Q to denote the names of distributions, and lowercase
letters p, q to denote probabilities. Thus, a random variable X with distribution P(X) and
support X may satisfy that for a specific value x ∈ X , we have p(x) := P [X = x] = 1/2.

2.2 Convexity and Jensen’s inequality

A set S ⊂ Rn is said to be convex subset of Rn if the line segment joining any two points
in S lies entirely in S i.e., for all x, y ∈ S and for all α ∈ [0, 1], α · x + (1 − α) · y ∈ S. For
a convex set S ⊆ Rn, a function f : S → R is said to be a convex function on S, if for all
x, y ∈ S and for all α ∈ [0, 1], we have

f (α · x + (1 − α) · y) ≤ α · f (x) + (1 − α) · f (y) .

Equivalently, we say that the function f is convex if the set S f = {(x, z) | z ≥ f (x)} is a
convex subset of Rn+1. f is said to be strictly convex when the inequality above is strict

2

for all x, y, α. A function which satisfies the opposite inequality i.e., for all x, y ∈ S and
α ∈ [0, 1]

f (α · x + (1 − α) · y) ≥ α · f (x) + (1 − α) · f (y) ,

is said to be a concave function (and strictly concave if the inequalities are strict). Note
that if f is a convex function then − f is a concave function (and vice-versa). For a single
variable function f : R → R which is twice differentiable, we can also use the easier
criterion that f is convex on S ⊆ R if and only if f ′′(x) ≥ 0 for all x ∈ S. We will frequently
use the following inequality about convex functions.

Lemma 2.1 (Jensen’s inequality). Let S ⊆ Rn be a convex set and let X be a random variable
taking values only inside S. Then, for a convex function f : S → R, we have that

E [f (X)] ≥ f (E [X]) .

Equivalently, for a concave function f : S → R, we have

E [f (X)] ≤ f (E [X]) .

Note that the definition of convexity is the same as the statement of Jensen’s inequality
for a random variable taking only two values: x with probability α and y with probability
1 − α. You can try the following exercises to familiarize yourself with this inequality.

Exercise 2.2. Prove Jensen’s inequality when the random variable X has a finite support.

Exercise 2.3. Check that the f (x) = x2 is a convex function on R. Also show that the functions
log(x) and x log(x) are respectively, concave and convex functions on (0, ∞).

Exercise 2.4. Prove the Cauchy-Schwarz inequality using Jensen’s inequality.

3 Entropy

The concepts from information theory are applicable in many areas as it gives a precise
mathematical way of stating and answering the following question: How much informa-
tion is revealed by the outcome of a random event? Let us begin with a few simple exam-
ples. Let X be a random variable which takes the value a with probability 1/2 and b with
probability 1/2. We can then describe the value of X using one bit (say 0 for a and 1 for b).
Suppose it takes one of the values {a1, . . . , an}, each with probability, then we can describe
the outcome using ⌈log2(n)⌉ bits. The n possible outcomes for this random variable each
occur with probability 1/n, and require ≈ log2(n) bits to describe.

The concept of entropy is basically an extrapolation of this idea when the different out-
comes do not occur with equal probability. We think of the “information content” of an

3

event that occurs with probability p as being log2(1/p). If a random variable X is dis-
tributed over a universe X = {a1, . . . , an} such that it takes value x ∈ X with probability
p(x). Then, we define the entropy of the random variable X as

H(X) = ∑
x∈X

p(x) · log
(

1
p(x)

)
.

The following basic property of entropy is extremely useful in applications to counting
problems.

Proposition 3.1. Let X be a random variable supported on a finite set X as above. Then

0 ≤ H(X) ≤ log(|X |) .

Proof: Since p(x) ≤ 1 we have log(1/p(x)) ≥ 0 for all x ∈ X and hence H(X) ≥ 0. For
the upper bound, consider a random variable Y which takes value 1/p(x) with probability
p(x). Since log(·) is a concave function, we use Jensen’s inequality to say that

∑
x∈X

p(x) · log
(

1
p(x)

)
= E [log(Y)]

≤ log (E [Y])

= log

(
∑

x∈X
p(x) · 1

p(x)

)
= log(|X |) .

4 Source Coding

We will now attempt to make precise the intuition that a random variable X takes H(X)
bits to describe on average. We shall need the notion of prefix-free codes as defined below.

Definition 4.1. A code for a set X over an alphabet Σ is a map C : X → Σ∗ which maps each
element of X to a finite string over the alphabet Σ. We say that a code is prefix-free if for any
x, y ∈ X such that x ̸= y, C(x) is not a prefix of C(y) i.e., C(y) ̸= C(x) ◦ σ for any σ ∈ Σ∗.

For now, we will just use Σ = {0, 1}. For the rest of lecture, we will use prefix-free code to
mean prefix-free code over {0, 1}. The image C(x) for an image x is also referred to as the
codeword for x.

Note that a prefix-free code has the convenient property that if we are receiving a stream
of coded symbols, we can decode them online. As soon as we see C(x) for some x ∈ U,

4

we know what we have received so far cannot be a prefix for C(y), for any y ̸= x. The
following inequality gives a characterization of the lengths of codewords in a prefix-free
code. This will help prove both upper and lower bounds on the expected length of a
codeword in a prefix-free code, in terms of entropy.

Proposition 4.2 (Kraft’s inequality). Let |X | = n. There exists a prefix-free code for X over
{0, 1} with codeword lengths ℓ1, . . . , ℓn if and only if

n

∑
i=1

1
2ℓi

≤ 1 .

For codes over a larger alphabet Σ, we replace 2ℓi above by |Σ|ℓi .

Proof: Let us prove the “if” part first. Given ℓ1, . . . , ℓn satisfying ∑i 2−ℓi ≤ 1, we will
construct a prefix-free code C with these codeword lengths. Without loss of generality, we
can assume that ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓn = ℓ∗.

It will be useful here to think of all binary strings of length at most ℓ as a complete binary
tree. The root corresponds to the empty string and each node at depth d corresponds to
a string of length d. For a node corresponding to a string s, its left and right children
correspond respectively to the strings s0 and s1. The tree has 2ℓ

∗
leaves corresponding to

all strings in {0, 1}ℓ∗ .
We will now construct our code by choosing nodes at depth ℓ1, . . . , ℓn in this tree. When
we select a node, we will delete the entire tree below it. This will maintain the prefix-free
property of the code. We first chose an arbitrary node s1 at depth ℓ1 as a codeword of
length ℓ1 and delete the subtree below it. This deletes 1/2ℓ1 fraction of the leaves. Since
there are still more leaves left in the tree, there exists a node (say s2) at depth ℓ2. Also, s1
cannot be a prefix of s2, since s2 does not lie in the subtree below s1. We choose s2 as the
second codeword in our code C. We can similarly proceed to choose other codewords. At
each step, we have some leaves left in the tree since ∑i 2−ℓi ≤ 1.

Note that we need to carry out this argument in increasing order of lengths. Otherwise, if
we choose longer codewords first, we may have to choose a shorter codeword later which
does not lie on the path from the root to any of the longer codewords, and this may not
always possible e.g., there exists a code with lengths 1, 2, 2 but if we choose the strings 01
and 10 first then there is no way to choose a codeword of length 1 which is not a prefix.

For the “only if” part, we can simply reverse the above proof. Let C be a given prefix-free
code with codeword lengths ℓ1, . . . , ℓn and let ℓ∗ = max {ℓ1, . . . , ℓn}. Considering again the
complete binary tree of depth ℓ∗, we can now locate the codewords (say) C(x1), . . . , C(xn)
as nodes in the tree. We say that a codeword C(x) dominates a leaf L if L occurs in the
subtree rooted at C(x). Note that the out of the total 2ℓ

∗
fraction of leaves dominated by

a codeword of length ℓi is 2−ℓi . Also, note that if C(x) and C(y) dominate the same leaf

5

L, then either C(x) appears in the subtree rooted at C(y) or vice-versa. Since the code is
prefix-free, this cannot happen and the sets of leaves dominated by codewords must be
disjoint. Thus, we have ∑i 2−ℓi ≤ 1.

This part of the proof also has a probabilitic interpretation. Consider an experiment where
we generate ℓ∗ random bits. For x ∈ X , let Ex denote the event that the first |C(x)| bits we
generate are equal to C(x). Note that since C is a prefix-free code, Ex and Ey are mutually
exclusive for x ̸= y. Moreover, the probability that Ex happens is exactly 1/2|C(x)|. This
gives

1 ≥ ∑
x∈X

P [Ex] = ∑
x∈X

1
2|C(x)| =

n

∑
i=1

1
2ℓi

.

We will show that the concept of entropy, defined in the previous lecture, provides a lower
bound on the expected length of any prefix free code. In particular, we will now show that
any prefix-free code for communicating the value of a random variable X must use at least
H(X) on average.

Claim 4.3. Let X be a random variable taking values in X and let C : X → {0, 1} be a prefix-free
code. Then the expected number of bits used by C to communicate the value of X is at least H(X).

Proof: The expected number of bits used is ∑x∈X p(x) · |C(x)|. We consider the quantity

H(X)− ∑
x∈X

p(x) · |C(x)| = ∑
x∈X

p(x) ·
(

log
(

1
p(x)

)
− |C(x)|

)
= ∑

x∈X
p(x) · log

(
1

p(x) · 2|C(x)|

)
.

We consider a random variable Y with takes the value 1
p(x)·2|C(x)| with probability p(x). The

above expression then becomes E [log(Y)]. Using Jensen’s inequality gives

E [log(Y)] ≤ log (E [Y]) = log

(
∑

x∈X
p(x) · 1

p(x) · 2|C(x)|

)
= log

(
∑

x∈X

1
2|C(x)|

)
which is non-positive since ∑x∈U

1
2|C(x)| ≤ 1 by Kraft’s inequality.

The Shannon code: We now construct a (prefix-free) code for conveying the value of X,
using at most H(X) + 1 bits on average (over the distribution of X). For an element x ∈ X
which occurs with probability p(x), we will use a codeword of length ⌈log(1/p(x))⌉. By
Kraft’s inequality, there exists a prefix-free code with these codeword lengths, since

∑
x∈X

1
2|C(x)| = ∑

x∈X

1
2⌈log(1/p(x))⌉ ≤ ∑

x∈X

1
2log(1/p(x))

= ∑
x∈X

p(x) = 1 .

6

Also, the expected number of bits used is

∑
x∈X

p(x) · ⌈log(1/p(x))⌉ ≤ ∑
x∈X

p(x) · (log(1/p(x)) + 1) = H(X) + 1 .

This code is known as the Shannon code.

7

	Administrivia
	A quick reminder about random variables and convexity
	Random variables
	Convexity and Jensen's inequality

	Entropy
	Source Coding

