
Information and Coding Theory Winter 2025

Homework 4
Due: March 7, 2025

Note: You may discuss these problems in groups. However, you must write up your own solutions
and mention the names of the people in your group. Also, please do mention any books, papers or
other sources you refer to. It is recommended that you typeset your solutions in LATEX.

1. More on linear codes. [2+4+4 = 10 points]
Recall that a linear code C ⊆ Fn

q was a subspace specified by a generator matrix G ∈
Fn×k

q such that ∀w ∈ Fk
q , Enc(w) = Gw. The parity-check matrix was defined as a

matrix H such that the columns of HT form a basis for the null-space of GT. Prove
the following facts about linear codes.

(a) Prove that for a linear code C, the distance ∆(C) can be written as

∆(C) = min
x∈C\{0n}

wt(x) ,

where 0n denotes the all-zero vector in Fn
q and wt(x) denotes the number of

non-zero entries in x.

(b) Recall that we considered the Hamming code over the field F2 with block-length
n = 7 in class, defined by a parity check matrix with the seven columns corre-
sponding to the numbers 1 through 7, written in binary. We now consider the
general Hamming code, defined by the parity-check matrix H ∈ Fr×n

2 where
n = 2r − 1, and the ith column of H is given by the number i written in binary
using r bits (take the top entry to be the most significant bit and the bottom
entry to be the least significant bit). Find the dimension, block-length and the
distance for this code.

(c) For a linear code C with generator matrix G and parity-check matrix H, it’s dual
code C⊥ is defined as a code with generator matrix HT. Prove that GT is a parity-
check matrix for C⊥. Find the message length, block length and distance for the
dual code of the Hamming code defined above.

2. Scrambled Reed-Solomon Codes [by Venkat Guruswami]. [5 + 5 = 10 points]
Let {a1, . . . , an} be distinct elements of Fq used to define a Reed-Solomon code C ⊆
Fn

q with dimension k. Assume that k < n/6. Recall that a message (m0, . . . , mk−1)
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is encoded by thinking of it as a polynomial f (X) = ∑k−1
j=0 mj · X j and taking the

encoding Enc(m) = ( f (a1), . . . , f (an)).

For the following parts, assume the fact (used in class) that for a bivariate polynomial
h(X, Y), we can find all its factors of the form Y − f (X).

(a) Suppose we sent two codewords according to the polynomials f and f ′ (of
degree at most k − 1) but they got mixed up. Thus, we now have two lists
(b1, . . . , bn) and (c1, . . . , cn) and we know for each i ∈ [n]

either f (ai) = bi and f ′(ai) = ci or f (ai) = ci and f ′(ai) = bi

Note that each coordinate could be independently scrambled i.e., it may hap-
pen that for some i, f (ai) = bi and f ′(ai) = ci and for some j ̸= i, f (aj) =
cj and f ′(aj) = bj. Also, we don’t know which is the case for which coordinate
i. Give an algorithm to find both f and f ′. [Hint: First find f + f ′ and f · f ′.]

(b) Now, suppose that instead of getting both the values f (ai) and f ′(ai) for each i,
we only got one value βi, such that for each i we either have βi = f (ai) or βi =
f ′(ai). Again, it might happen that for some i, βi = f (ai) while for some other
j ̸= i, β j = f ′(aj) and we don’t know which is the case for which i. However,
we are given the promise that

n
3
≤ |{i ∈ [n] | βi = f (ai)}| ≤

2n
3

and
n
3
≤

∣∣{i ∈ [n] | βi = f ′(ai)
}∣∣ ≤ 2n

3
.

Give an algorithm to find both f and f ′.

3. Codes and pseudorandomness. [Just for fun: no need to submit]
In this problem, we will use codes to construct pseudorandom objects known as t-
wise independent distributions. Let C ⊆ Fn

2 be a linear code with distance ∆(C) = d,
and let H ∈ F

(n−k)×n
2 be the parity-check matrix of this code.

(a) First consider z uniformly distributed in Fn−k
2 . Using the fact that z is a random

binary string of length n − k, prove that for any a ∈ Fn−k
2 \ {0n−k}

E
z∈Fn−k

2

[(−1)a·z] = 0 where a · z = aTz =
n−k

∑
i=1

aizi mod 2 .

[Hint: The bits of z are independent. Consider what happens to (−1)a·z when
you change one bit in z?]

(b) Prove that the code can be used to extend this property of the uniform dis-
tribution over length n − k strings, to a distribution over n bits i.e., we can
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“stretch” the pseudorandomness. Consider the distribution obtained by choos-
ing z ∈ Fn−k

2 at random and taking x = HTz. Note that x ∈ Fn
2 . Prove that for

any b ∈ Fn
2 \ {0n} with wt(b) < d, we have

E
x=HT z
z∈Fn−k

2

[
(−1)b·x

]
= E

z∈Fn−k
2

[
(−1)b·(HTz)

]
= 0 .

Such distributions are called (d − 1)-wise independent distributions on n bits,
since they “look like” the uniform distributions as long as one looks at at most
(d − 1) bits at a time.

(c) Show that the Hamming code can be used to produce a 2-wise independent
distribution on n = 2r − 1 bits, starting with the uniform distribution on just r
bits.

4. Good distance codes from linear compression. [Just for fun: no need to submit]
In class, we saw that a linear compression scheme can be used to obtain capacity-
achieving codes for the binary symmetric channel. Here, we will show that a lin-
ear compression scheme with a good probabilistic guarantee, also yields codes which
have good distance, and can hence be used to correct worst-case errors. Let H be
an arbitray matrix in Fm×n

2 , which yields a good linear compression scheme for
Z ∼ (Bern(p))n, i.e., there exists a (deterministic) decompression algorithm Decom :
Fm

2 → Fn
2 such that

P
Z∼(Bern(p))n

[Decom(HZ) ̸= Z] ≤ 2−t .

For the following problem, assume that H has full row-rank i.e., im(H) = Fm
2 . You

can also assume that the decompression algorithm always “checks its answer” i.e., if
given w it returns z, then we do have that Hz = w (of course, since we are compress-
ing, we have m < n, and there might also exist other z′ such that Hz′ = w.) Also,
take p < 1/2.

Prove the following:

(a) The error probablity for any (deterministic) decompression algorithm can be
written as

P
Z∼(Bern(p))n

[Decom(HZ) ̸= Z] = 1 − ∑
w∈Fm

2

P
Z∼(Bern(p))n

[Z = Decom(w)] .

(b) Conclude from the above expression that the smallest error probability is achieved
by the following (maximum-likelihood) decompression map

Decom(w) := arg min
x:Hx=w

{wt(x)} .
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(c) Use the above to show that the code C ⊆ Fn
2 with the above matrix H as the

parity-check matrix H, i.e.,

C = {x ∈ Fn
2 | Hx = 0} ,

has distance at least t/(log(1/p)).
[Hint: Using x ∈ C, for each z ∈ Fn

2 such that Hz that is correctly decompressed,
find a z′ such that Hz′ is incorrectly decompressed. How do PZ∼(Bern(p))n [Z = z′]
and PZ∼(Bern(p))n [Z = z] compare?]
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