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1 Binary hypothesis testing

In this lecture, we apply the tools developed in the past few lectures to understand the
problem of distinguishing two distributions (special cases of which have been discussed
in the previous lectures). This problem is also known as the hypothesis testing. Suppose
we have two distributions P0 and P1 on a finite set X . The “universe” chooses one of the
two distributions and generates the data, which consists of a sequence x ∈ X n chosen
either from Pn

0 or Pn
1 . The true distribution is unknown to us, but we are guaranteed that

once P0 or P1 is chosen, all n samples in the sequence x are sampled independently from
the chosen distribution. The goal is to distinguish between the following two hypotheses:

- H0: The true distribution is P0.

- H1: The true distribution is P1.

Sometimes H0 is also referred to as the null (default) hypothesis. We will consider (deter-
ministic) tests T : X n → {0, 1}, which take the sequence of samples x as input and select
one of the hypotheses. There are two types of errors we will be concerned with

α(T) := P
x∼Pn

0

[T(x) = 1] (False Positive)

β(T) := P
x∼Pn

1

[T(x) = 0] (False Negative) .

The following claim is easy to prove based on the properties of total-variation distance
considered earlier.

Proposition 1.1. minT {α(T) + β(T)} = 1 − δTV (Pn
0 , Pn

1 ) = 1 − 1
2 · 󰀂Pn

0 − Pn
1 󰀂1.

Proof: For any test T, we have,

α(T) = E
x∼Pn

0

[T(x)] and β(T) = 1 − E
x∼Pn

1

[T(x)]

Thus,

α(T) + β(T) = 1 −
󰀕

E
x∼Pn

1

[T(x)]− E
x∼Pn

0

[T(x)]
󰀖

≥ 1 − δTV(Pn
0 , Pn

1 ) .
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Also, recall that a test of the form

T(x) =

󰀻
󰀿

󰀽
1 if Pn

1 (x) ≥ Pn
0 (x)

0 if Pn
1 (x) < Pn

0 (x)
,

is tight for the above inequality.

One may ask why should be should we only consider the optimal tests for minimizing
the sum α(T) + β(T). We may care more about a false positive than a false negative, and
may want to minimize a weighted sum (or some other monotone function) of the errors.
Moreover, while the bound in Proposition 1.1 (often computed using Pinsker’s inequality)
is useful in the case when α(T) and β(T) are constants, it is harder to use when n is large
and α(T), β(T) are decreasing (exponentially) with n.

We will in fact be able to characterize an optimal family of tests, and obtain bounds on
α(T) and β(T) individually. The following lemma shows that all optimal tests should be
of the form above, which make a decision only based on the ratio Pn

0 (x)/Pn
1 (x).

Lemma 1.2 (Neyman-Pearson Lemma). Let T be a test of the form

T(x) =

󰀻
󰀿

󰀽
1 if Pn

1 (x)/Pn
0 (x) ≥ ∆

0 if Pn
0 (x)/Pn

1 (x) < ∆ ,

for some constant ∆ > 0. Let T′ be any other test. Then,

α(T′) ≥ α(T) or β(T′) ≥ β(T) .

Proof: The proof follows simply from the observation that for all x ∈ X n

󰀃
T(x)− T′(x)

󰀄
· (Pn

1 (x)− ∆ · Pn
0 (x)) ≥ 0 .

This is true because if Pn
1 (x)− ∆ · Pn

0 (x) ≥ 0, then T(x) = 1 and the first quantity is non-
negative. Similarly, when Pn

1 (x)− ∆ · Pn
0 (x) is negative, T(x) = 0 and T(x)− T′(x) ≤ 0.

Summing over all x ∈ X n on both sides gives

E
x∼Pn

1 (x)

󰀅
T(x)− T′(x)

󰀆
− ∆ · E

x∼Pn
0

󰀅
T(x)− T′(x)

󰀆
≥ 0

⇒
󰀃
(1 − β(T))− (1 − β(T′))

󰀄
− ∆ ·

󰀃
α(T)− α(T′)

󰀄
≥ 0

⇒ β(T′)− β(T)
α(T)− α(T′)

≥ ∆ > 0 .

Thus, α(T)− α(T′) ≥ 0 implies β(T′)− β(T) ≥ 0.
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1.1 Analyzing error exponents

We now discuss how to analyze the error probabilities for the optimal tests as characterized
by the Neyman-Pearson lemma. As before, let Px denote the type (empirical distribution
on X ) of the sequence x. Check that the test T(x) considered above can be written in the
following form

Pn
1 (x)

Pn
0 (x)

≥ ∆ ⇔ D(Px󰀂P0)− D(Px󰀂P1) ≥ 1
n
· log ∆ .

We define the following sets of probability distributions.

Π :=
󰀝

P | D(P󰀂P0)− D(P󰀂P1) ≥
1
n
· log ∆

󰀞

Πc :=
󰀝

P | D(P󰀂P0)− D(P󰀂P1) <
1
n
· log ∆

󰀞

Check the following property of the sets Π and Πc.

Exercise 1.3. Check that both the sets Π and Πc are convex (and are in fact defined by linear
inequalities in the distributions P). Also, check that Π is a closed set.

We can now estimate α(T) and β(T) using Sanov’s theorem. The ≈ notation below ignores
second order terms in the exponents. We get

α(T) = P
x∼Pn

0

[Px ∈ Π] ≈ 2−n·D(P∗
0 󰀂P0)

β(T) = P
x∼Pn

1

[Px ∈ Πc] ≈ 2−n·D(P∗
1 󰀂P1) ,

where P∗
0 = arg minP∈Π {D(P󰀂P0)}. Also, since Πc is not a closed set, we define P∗

1 with
respect to the closure of Πc of Πc i.e., P∗

1 = arg minP∈Πc {D(P󰀂P1)}.

We will see in a later lecture how to compute the distributions which minimize the KL-
divergence (known as I-projections) as in the bounds above. The distributions P∗

0 and P∗
1

in the above bounds turn out to be the same, and of the form

P∗
0 (x) = P∗

1 (x) = P∗ =
Pλ

0 (x) · P1−λ
1 (x)

∑y∈X Pλ
0 (y) · P1−λ

1 (y)
,

where λ is the solution to an optimization problem.

Note that since P1 ∈ Π (T will always answer 0), we have that D(P∗
0 󰀂P0) ≤ D(P1󰀂P0). Also,

as ∆ increases, the boundary of Π approaches closer to P1 and the exponent approaches
D(P1󰀂P0). This is made precise by the Chernoff-Stein lemma, which we will not discuss in
detail (but is good to know).
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1.2 Bayesian error

Going back to the case of the expression α(T)+ β(T), we can view it as (twice) the expected
error in case we have a prior distribution on the hypotheses. If we chose the hypotheses
with probabilities 1/2 each, the expected error will be 1

2 · (α(T) + β(T)). Recall that the
optimal test in this case used ∆ = 1 i.e.,

T(x) =

󰀻
󰀿

󰀽
1 if Pn

1 (x)/Pn
0 (x) ≥ 1

0 if Pn
0 (x)/Pn

1 (x) < 1
= arg min

i∈{0,1}
{D(Px󰀂Pi)} ,

and the sets Π and Πc are defined as

Π := {P | D(P󰀂P0)− D(P󰀂P1) ≥ 0}
Πc := {P | D(P󰀂P0)− D(P󰀂P1) < 0}

When n is large enough, we will have

1
2
· (α(T) + β(T)) ≈ 2−n·D(P∗󰀂P0) + 2−n·D(P∗󰀂P1) ≈ 2−n·min{D(P∗󰀂P0),D(P∗󰀂P1)} ,

where P∗ = arg minP∈Π D(P󰀂P0) = arg minP∈Πc D(P󰀂P1), as before. Also note that the
exponent remains the same when considering any prior distribution (π, 1 − π) (not de-
pendent on n) on the hypotheses P0 and P1, as the first order term in the exponent is still
proportional to C(P0, P1) := min {D(P∗󰀂P0), D(P∗󰀂P1)}. This quantity, which is symmet-
ric in terms of P0 and P1 is referred to as the Chernoff distance between the two distributions,
and is said to define the optimal exponent for the Bayesian error of hypothesis testing.

Note that the above analysis is only for the case of large n. When n is small, the bound we
will use the most is the lower bound in terms of the total variation distance i.e.,

min
T

{α(T) + β(T)} = 1 − δTV(Pn
0 , Pn

1 ) .

We will also develop such a bound for the case of multiple hypotheses.

2 Multiple hypothesis testing

We will often use the case of teting between multiple hypotheses as proof technique for
lower bounds, and the important bound there will be an analog of the bound for small n
in case of the binary hypothesis testing. However, before that we briefly discuss known
generalizations of the results for binary hypotheses in the case of large n.

4



2.1 Bayesian error

Consider the case of distinguishing between k distributions P1, . . . , Pk on X , again using a
sequence x = (x1, . . . , xn) of n independent samples from one of them. A test T(x) now
needs to have an output in [k] and can have k(k − 1) types of errors, of the form

αij := P
x∼Pn

i

[T(x) = j] .

While it is harder to characterize the optimal error tests for each individual error type, a
generalization of the Bayesian error analysis was obtained by Leang and Johnson [LJ97]
(see also [Wes08] for a different interpretation of the test). Given any prior (π1, . . . , πk) on
the k hypotheses, the Bayesian error is a sum of k(k − 1) terms, and is equal to

π1 ·
󰀣

∑
j ∕=1

α1j

󰀤
+ · · ·+ πk ·

󰀣

∑
j ∕=k

αkj

󰀤

As n increases, the exponential decay of the largest term among these dominates the error
rate, and the exponent is proportional to mini ∕=j C(i, j), where C(i, j) (Chernoff distance) is
the optimal exponent for the binary case discussed above i.e., the error is dominated by the
two hypotheses closest in the Chernoff distance. The optimal test for the Bayesian error is
also a generalization of the binary case, and is of the form

T(x) = arg min
i∈[k]

{D(Px󰀂Pi)} .

We will not discuss (or need) the details of this case, but please see the references [LJ97,
Wes08] for a proof.

2.2 Fano’s inequality and a lower bound

We will now prove a lower bound on the error analogous to Proposition 1.1 in the binary
case. This will rely on Fano’s inequality, for which we recall the statement below.

Lemma 2.1 (Fano’s inequality). Let Z → Y → 󰁥Z be a Markov chain with Z taking values in a
finite set Z , and let pe = P

󰁫
󰁥Z ∕= Z

󰁬
. Let H2(pe) denote the binary entropy function computed at

pe. Then,
H2(pe) + pe · log (|Z|− 1) ≥ H(Z|󰁥Z) ≥ H(Z|Y) .

Let {Pv}v∈V be a collection of hypotheses. Let the environment choose one of the hypothe-
ses uniformly at random, denoted by a random variable V distributed uniformly in V . Let
x ∼ Pn

v be a sequence of independent samples from a chosen distribution Pv (denoted by
the random variable X). We will now bound the probability of error for a classifier 󰁥V for
V. Note that V → X → 󰁥V is a Markov chain.
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Proposition 2.2. Let V → X → 󰁥V be the Markov chain as above. Then,

pe = P
󰁫
V ∕= 󰁥V

󰁬
≥ 1 − n · Ev1,v2∈V [D(Pv1󰀂Pv2)] + 1

log |V| .

Proof: From Fano’s inequality, we have that

1 + pe · log |V| ≥ H(pe) + pe · log |V| ≥ H(V|X) = log |V|− I(V; X) .

We can now analyze the mutual information between V and x using the equivalent expres-
sion in terms of KL-divergence.

I(V; x) = D(P(V, X)󰀂P(V)P(X))

= D(P(V)󰀂P(V)) + E
v∈V

󰀅
D(P(X|V = v)󰀂P(X))

󰀆

= E
v∈V

󰀅
D(Pn

v 󰀂P)
󰀆

,

where P = Ev∈V [Pn
v ] denotes the marginal distribution of X. Using the convexity of KL-

divergence in the second argument and Jensen’s inequality, we get

E
v∈V

󰀅
D(Pn

v 󰀂P)
󰀆

≤ E
v1,v2∈V

󰀅
D(Pn

v1
󰀂Pn

v2
)
󰀆

.

Using the chain rule for KL-divergence gives

E
v1,v2∈V

󰀅
D(Pn

v1
󰀂Pn

v2
)
󰀆

= n · E
v1,v2∈V

[D(Pv1󰀂Pv2)] .

Combining the bounds, we have

1 + pe · log |V| ≥ log |V|− n · E
v1,v2∈V

[D(Pv1󰀂Pv2)] ,

which proves the claim.
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