
Information and Coding Theory Autumn 2017

Homework 1
Due: October 16, 2017

Note: You may discuss these problems in groups. However, you must write up your own solutions
and mention the names of the people in your group. Also, please do mention any books, papers or
other sources you refer to. It is recommended that you typeset your solutions in LATEX.

1. World Series (Problem 2.18 from the book). Two teams A and B play a series of up
to 5 games, in which the team to win 3 games wins the series. Let X be a random
variable which is a sequence of letters corresponding to the winners of each of the
games played - possible values for X then include AAA, ABBAB etc. Let Y be the
number of games played (the teams play till the series winner is decided). Calculate
H(X), H(Y), H(X|Y), H(Y|X) and I(X; Y). Assume both teams are equally likely to
win each game independent of any previous games.

2. Lost in transmission. n people, say A1, . . . , An (sitting in a circle) play a game in
which A1 gives a message to A2, A2 passes it to A3, A3 to A4 and so on. Finally, An
passes the message she received back to A1. Let us assume for simplicity that the
message passed by A1 is a random variable X1 which is 0 or 1 with equal probability.
Let Xi be the message passed by the person Ai: assume that person Ai pass the
message they received correctly (Xi = Xi−1) with probability 1− ε and get confused
and pass the opposite message (Xi = Xi−1) with probability ε. Calculate I(X1; Xn).

3. Entropy and friends. Prove the following basic identities about the quantities we
have studied so far:

(a) Let X be a random variable distributed according to the distribution P on a finite
universe U, and let Q be the uniform distribution on U. Then

D(P||Q) = log |U| − H(X) .

(b) Let X, Y be random variables jointly distributed according to the distribution
P(X, Y). Let P(X) and P(Y) denote the marginal distributions for the variables
X and Y. Then

I(X; Y) = D(P(X, Y)||P(X)P(Y)) .

4. Three’s a crowd. There is no good notion of the mutual information between three
random variables X, Y and Z. One possible definition is given as follows: thinking
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of entropy of a variable H(X) as the “single variable mutual information” I(X), we
can write the two-variable mutual information I(X; Y) as I(X; Y) = I(X)− I(X|Y).
We extend this to define

I(X; Y; Z) = I(X; Y)− I(X; Y|Z) .

(a) Show that I(X; Y; Z) is symmetric in X, Y, Z. In particular:

I(X; Y; Z) = H(XYZ)− H(XY)− H(YZ)− H(ZX) + H(X) + H(Y) + H(Z) .

(b) Give an example of three random variables X, Y, Z such that I(X; Y; Z) < 0.

5. Measures of independence. We have seen I(X; Y) is a measure of how much the dis-
tribution of Y is affected by conditioning on X. Let P(X, Y) be the joint distribution
of X and Y. Consider the following quantity, which is the expected distance between
the original distribution of Y and the one obtained conditioning on X

ρ(Y|X) = E
x
[‖P(Y|X = x)− P(Y)‖1] ,

where the expectation over X is according to the marginal distribution P(X). Prove
that

ρ(Y|X) ≤
√

2 ln 2 · I(X; Y) .

6. Energy-aware Kraft’s inequality. Suppose we have a channel where a 0 takes 1 unit
of energy to transmit and 1 takes 2 units of energy transmit. Suppose there exists a
prefix-free code for a universe U = {a1, . . . , an} such that the codeword for ai takes
ei units of energy to transmit. Show that

n

∑
i=1

(√
5− 1
2

)ei

≤ 1 .

7. Extra problem (not to be submitted): Counting homomorphisms. In this problem,
we will see that Shearer’s lemma can be used to give a tight bound for the maximum
number of ways of embedding a graph G (of constant size) into a graph H with at
most m edges. This was originally proved by Alon and the proof outlined here is due
to Friedgut and Kahn.

Let G = (VG, EG) be a given undirected graph of constant size. For an undirected
graph H = (VH, EH), let E(G, H) denote the number of embeddings of G in H i.e., the
number of maps f : VG → VH such that for all (i, j) ∈ EG, we have ( f (i), f (j)) ∈ EH.
Let E(G, m) denote the maximum of E(G, H) over all graphs H with at most m edges.
We will show that

c1 ·mα∗(G) ≤ E(G, m) ≤ c2 ·mα∗(G) ,

where c1 and c2 are constants depending on the graph G, and α∗(G) is a parameter
known as the fractional independent set number of the graph.
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(a) For a graph G, the quantity α∗(G) is defined to the optimal solution to the
following linear programming relaxation for the maximum independent set
(largest set of vertices not containing any edges).

maximize: ∑
i∈VG

xi

subject to: xi + xj ≤ 1 ∀e = (i, j) ∈ EG

xi ∈ [0, 1] ∀i ∈ VG

Show that if we restrict xi to only take values 0 or 1, then the above is the same
as the maximum independent set problem. Show that the following linear pro-
gram is the dual of the above, and hence also has optimum value equal to α∗(G)
by LP duality. You may assume that all vertices in G have degree at least 1
(why?) to simplify the above LP before writing it’s dual.

minimize: ∑
e∈EG

ye

subject to: ∑
e3i

ye ≥ 1 ∀i ∈ VG

ye ∈ [0, 1] ∀e ∈ VG

(b) Let x be an optimal solution to the first LP. We will use it to prove a lower bound
on E(G, m) by constructing a graph H. Let |VG| = k and |EG| = `. The vertices
of H will consist of k disjoint sets V1, . . . , Vk of sizes

|Vi| =

(
m
|EG|

)xi

.

We add a complete bipartite graph between Vi and Vj whenever (i, j) ∈ EG.
Show that the graph H constructed as above has at most m edges. Also show
that

E(G, H) ≥ c1 ·mα∗(G) ,

where c1 is a constant depending on G.
(c) Finally, we upper bound E(G, m). For any graph H with at most m edges,

let (F(1), . . . .F(k)) denote a random embedding of G in H. Let y be an op-
timal solution to the dual LP. Use y to construct an appropriate distribution
over pairs of random variables (F(i), F(j)) and use Shearer’s lemma to bound
H(F(1), . . . .F(k)). Show that this gives

E(G, m) ≤ c2 ·mα∗(G) ,

where c2 is a constant depending on G.
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