A Characterization of Strong Approximation Resistance

- n Boolean variables, m constraints (each on k variables)

- n Boolean variables, m constraints (each on k variables)
- Satisfy as many as possible.

Max-3-SAT

$$x_1 \lor x_{22} \lor \overline{x}_{19}$$

 $x_3 \lor \overline{x}_9 \lor x_{23}$
 $x_5 \lor \overline{x}_7 \lor \overline{x}_9$
:

- n Boolean variables, m constraints (each on k variables)
- Satisfy as many as possible.

- n Boolean variables, m constraints (each on k variables)
- Satisfy as many as possible.

- n Boolean variables, m constraints (each on k variables)
- Satisfy as many as possible.

One of the most fundamental classes of optimization problems.

Max-3-XOR: Linear equations modulo 2 (in ± 1 variables)

Max-3-XOR: Linear equations modulo 2 (in ± 1 variables)

```
x_5 \cdot x_9 \cdot x_{16} = 1
x_6 \cdot x_{12} \cdot x_{22} = -1
x_7 \cdot x_8 \cdot x_{15} = -1
\vdots
```

Max-3-XOR: Linear equations modulo 2 (in ± 1 variables)

```
x_5 \cdot x_9 \cdot x_{16} = 1 x_5 \cdot x_9 \cdot x_{16} = 1 x_6 \cdot x_{12} \cdot x_{22} = -1 x_7 \cdot x_8 \cdot x_{15} = -1 x_7 \cdot x_8 \cdot (-x_{15}) = 1
```

Max-3-XOR: Linear equations modulo 2 (in ± 1 variables)

```
x_5 \cdot x_9 \cdot x_{16} = 1 x_5 \cdot x_9 \cdot x_{16} = 1 x_6 \cdot x_{12} \cdot x_{22} = -1 x_7 \cdot x_8 \cdot x_{15} = -1 x_7 \cdot x_8 \cdot (-x_{15}) = 1
```

Max-k-CSP(f): Given predicate $f: \{-1,1\}^k \to \{0,1\}$. Each constraint is f applied to some k (possibly negated) variables.

Max-3-XOR: Linear equations modulo 2 (in ± 1 variables)

$$x_5 \cdot x_9 \cdot x_{16} = 1$$
 $x_5 \cdot x_9 \cdot x_{16} = 1$ $x_6 \cdot x_{12} \cdot x_{22} = -1$ $x_7 \cdot x_8 \cdot x_{15} = -1$ \longrightarrow $x_7 \cdot x_8 \cdot (-x_{15}) = 1$

Max-k-CSP(f): Given predicate $f: \{-1,1\}^k \to \{0,1\}$. Each constraint is f applied to some k (possibly negated) variables.

$$C_i \equiv f\left(x_{i_1} \cdot b_1^{(i)}, \dots, x_{i_k} \cdot b_k^{(i)}\right)$$

Relax the problem of finding maximum fraction of constraints satisfiable.

Relax the problem of finding maximum fraction of constraints satisfiable.

Relax the problem of finding maximum fraction of constraints satisfiable.

- Can solve for all $\theta \implies \text{Can approximate within factor } \gamma.$

Relax the problem of finding maximum fraction of constraints satisfiable.

- Can solve for all $\theta \implies \text{Can approximate within factor } \gamma.$
- Hard to solve for some $\theta \implies$ Hard to approximate within factor γ .

- Let $\rho(f) = \mathbb{E}_{\mathbf{x}}[f(\mathbf{x})]$ be the fraction of constraints satisfied by a random assignment.

- Let $\rho(f) = \mathbb{E}_{\mathbf{x}}[f(\mathbf{x})]$ be the fraction of constraints satisfied by a random assignment.

-
$$\rho$$
(3-SAT) = 7/8, ρ (3-XOR) = 1/2

- Let $\rho(f) = \mathbb{E}_{\mathbf{x}}[f(\mathbf{x})]$ be the fraction of constraints satisfied by a random assignment.

-
$$\rho$$
(3-SAT) = 7/8, ρ (3-XOR) = 1/2

- f is approximation resistant if it is (NP/UG-) hard to distinguish

- Let $\rho(f) = \mathbb{E}_{\mathbf{x}}[f(\mathbf{x})]$ be the fraction of constraints satisfied by a random assignment.

-
$$\rho$$
(3-SAT) = 7/8, ρ (3-XOR) = 1/2

- f is approximation resistant if it is (NP/UG-) hard to distinguish

- Captures the notion of when is it hard to do better than a random assignment.

- [Håstad 01]: k-SAT and k-XOR are approximation resistant.

- [Håstad 01]: k-SAT and k-XOR are approximation resistant.
- [Hast 05]: Out of 400 predicates on 4 variables, classified 79 to be approximation resistant and 275 to be not so.

- [Håstad 01]: k-SAT and k-XOR are approximation resistant.
- [Hast 05]: Out of 400 predicates on 4 variables, classified 79 to be approximation resistant and 275 to be not so.
- [ST 06*, Chan 12]: If $f^{-1}(1)$ corresponds to a "nice" subspace of \mathbb{F}_2^k (AND of XORs).

- [Håstad 01]: k-SAT and k-XOR are approximation resistant.
- [Hast 05]: Out of 400 predicates on 4 variables, classified 79 to be approximation resistant and 275 to be not so.
- [ST 06*, Chan 12]: If $f^{-1}(1)$ corresponds to a "nice" subspace of \mathbb{F}_2^k (AND of XORs). (Uniform distribution on $f^{-1}(1)$ is a balanced and pairwise independent distribution on $\{-1,1\}^k$)

- [Håstad 01]: k-SAT and k-XOR are approximation resistant.
- [Hast 05]: Out of 400 predicates on 4 variables, classified 79 to be approximation resistant and 275 to be not so.
- [ST 06*, Chan 12]: If $f^{-1}(1)$ corresponds to a "nice" subspace of \mathbb{F}_2^k (AND of XORs). (Uniform distribution on $f^{-1}(1)$ is a balanced and pairwise independent distribution on $\{-1,1\}^k$)
- [AM 09*]: If there exists any balanced and pairwise independent distribution on $\{-1,1\}^k$ supported on $f^{-1}(1)$.

- [Håstad 01]: k-SAT and k-XOR are approximation resistant.
- [Hast 05]: Out of 400 predicates on 4 variables, classified 79 to be approximation resistant and 275 to be not so.
- [ST 06*, Chan 12]: If $f^{-1}(1)$ corresponds to a "nice" subspace of \mathbb{F}_2^k (AND of XORs). (Uniform distribution on $f^{-1}(1)$ is a balanced and pairwise independent distribution on $\{-1,1\}^k$)
- [AM 09*]: If there exists any balanced and pairwise independent distribution on $\{-1,1\}^k$ supported on $f^{-1}(1)$.
- [AK 13^*]: Characterization when f is even and instance is required to be k-partite.

- f is approximation resistant if it is (NP/UG-) hard to distinguish

- f is approximation resistant if it is (NP/UG-) hard to distinguish

- f is strongly approximation resistant if it is (NP/UG-) hard to distinguish

- f is approximation resistant if it is (NP/UG-) hard to distinguish

- f is strongly approximation resistant if it is (NP/UG-) hard to distinguish

- When is it hard to do anything different from a random assignment.

- f is approximation resistant if it is (NP/UG-) hard to distinguish

- f is strongly approximation resistant if it is (NP/UG-) hard to distinguish

- When is it hard to do anything different from a random assignment.
- Equivalent to approximation resistance for odd predicates. Almost all previous results prove strong approximation resistance.

- [Rag 08*]: f is approximation resistant iff $\forall \epsilon > 0$ there exists a $1 - \epsilon$ vs. $\rho(f) + \epsilon$ integrality gap instance for a certain SDP.

- [Rag 08*]: f is approximation resistant iff $\forall \epsilon > 0$ there exists a 1ϵ vs. $\rho(f) + \epsilon$ integrality gap instance for a certain SDP.
- [RS 09]: 1ϵ vs. $\rho(f) + \epsilon$ integrality gap instance for above SDP needs to have size at most $\exp(\exp(1/\epsilon))$.

- [Rag 08*]: f is approximation resistant iff $\forall \epsilon > 0$ there exists a 1ϵ vs. $\rho(f) + \epsilon$ integrality gap instance for a certain SDP.
- [RS 09]: 1ϵ vs. $\rho(f) + \epsilon$ integrality gap instance for above SDP needs to have size at most $\exp(\exp(1/\epsilon))$.
- Above argument also works for strong approximation resistance. Gives a recursively enumerable condition.

- [Rag 08*]: f is approximation resistant iff $\forall \epsilon > 0$ there exists a 1ϵ vs. $\rho(f) + \epsilon$ integrality gap instance for a certain SDP.
- [RS 09]: 1ϵ vs. $\rho(f) + \epsilon$ integrality gap instance for above SDP needs to have size at most $\exp(\exp(1/\epsilon))$.
- Above argument also works for strong approximation resistance. Gives a recursively enumerable condition.
- But what properties of f give rise to gap instances?

- [Rag 08*]: f is approximation resistant iff $\forall \epsilon > 0$ there exists a 1ϵ vs. $\rho(f) + \epsilon$ integrality gap instance for a certain SDP.
- [RS 09]: 1ϵ vs. $\rho(f) + \epsilon$ integrality gap instance for above SDP needs to have size at most $\exp(\exp(1/\epsilon))$.
- Above argument also works for strong approximation resistance. Gives a recursively enumerable condition.
- But what properties of f give rise to gap instances?
- Is it just properties of f or is the topology of the instance also important?

- [Rag 08*]: f is approximation resistant iff $\forall \epsilon > 0$ there exists a 1ϵ vs. $\rho(f) + \epsilon$ integrality gap instance for a certain SDP.
- [RS 09]: 1ϵ vs. $\rho(f) + \epsilon$ integrality gap instance for above SDP needs to have size at most $\exp(\exp(1/\epsilon))$.
- Above argument also works for strong approximation resistance. Gives a recursively enumerable condition.
- But what properties of f give rise to gap instances?
- Is it just properties of f or is the topology of the instance also important? (Hint: Just f)

- For a distribution μ on $\{-1,1\}^k$, let $\zeta(\mu) \in \mathbb{R}^{k+\binom{k}{2}}$ denote the vector of first and second moments

$$\zeta_i = \mathbb{E}_{x \sim \mu}[x_i]$$
 $\zeta_{ij} = \mathbb{E}_{x \sim \mu}[x_i \cdot x_j]$

- For a distribution μ on $\{-1,1\}^k$, let $\zeta(\mu) \in \mathbb{R}^{k+\binom{k}{2}}$ denote the vector of first and second moments

$$\zeta_i = \mathbb{E}_{\mathbf{x} \sim \mu}[\mathbf{x}_i] \qquad \zeta_{ij} = \mathbb{E}_{\mathbf{x} \sim \mu}[\mathbf{x}_i \cdot \mathbf{x}_j]$$

- Let C(f) be the convex polytope

$$\mathcal{C}(f) = \left\{ \zeta(\mu) \mid \mu \text{ is supported on } f^{-1}(1) \right\}.$$

- For a distribution μ on $\{-1,1\}^k$, let $\zeta(\mu) \in \mathbb{R}^{k+\binom{k}{2}}$ denote the vector of first and second moments

$$\zeta_i = \mathbb{E}_{\mathbf{x} \sim \mu}[\mathbf{x}_i] \qquad \zeta_{ij} = \mathbb{E}_{\mathbf{x} \sim \mu}[\mathbf{x}_i \cdot \mathbf{x}_j]$$

- Let C(f) be the convex polytope

$$\mathcal{C}(f) = \left\{ \zeta(\mu) \mid \mu \text{ is supported on } f^{-1}(1) \right\}.$$

- [AM 09*]: f is (strongly) approximation resistant if $0 \in C(f)$.

- For a distribution μ on $\{-1,1\}^k$, let $\zeta(\mu) \in \mathbb{R}^{k+\binom{k}{2}}$ denote the vector of first and second moments

$$\zeta_i = \mathbb{E}_{\mathbf{x} \sim \mu}[\mathbf{x}_i] \qquad \zeta_{ij} = \mathbb{E}_{\mathbf{x} \sim \mu}[\mathbf{x}_i \cdot \mathbf{x}_j]$$

- Let C(f) be the convex polytope

$$\mathcal{C}(f) = \left\{ \zeta(\mu) \mid \mu \text{ is supported on } f^{-1}(1) \right\}.$$

- [AM 09*]: f is (strongly) approximation resistant if $0 \in \mathcal{C}(f)$.
- Our condition is in terms of existence of a measure Λ on $\mathcal{C}(f)$ with certain symmetry properties.

- Each $\zeta \in \mathcal{C}(f)$ can be transformed by:

- Each $\zeta \in \mathcal{C}(f)$ can be transformed by:
 - Permuting the underlying k variables by a permutation π

$$(\zeta_{\pi})_i = \zeta_{\pi(i)} \qquad (\zeta_{\pi})_{ij} = \zeta_{\pi(i)\pi(j)}$$

- Each $\zeta \in \mathcal{C}(f)$ can be transformed by:
 - Permuting the underlying k variables by a permutation π

$$(\zeta_{\pi})_i = \zeta_{\pi(i)} \qquad (\zeta_{\pi})_{ij} = \zeta_{\pi(i)\pi(j)}$$

- Multiplying each variable x_i by a sign $b_i \in \{-1,1\}$

$$(\zeta_b)_i = b_i \cdot \zeta_i \qquad (\zeta_b)_{ij} = b_i b_j \cdot \zeta_{ij}$$

- Each $\zeta \in \mathcal{C}(f)$ can be transformed by:
 - Permuting the underlying k variables by a permutation π

$$(\zeta_{\pi})_i = \zeta_{\pi(i)} \qquad (\zeta_{\pi})_{ij} = \zeta_{\pi(i)\pi(j)}$$

- Multiplying each variable x_i by a sign $b_i \in \{-1,1\}$

$$(\zeta_b)_i = b_i \cdot \zeta_i \qquad (\zeta_b)_{ij} = b_i b_j \cdot \zeta_{ij}$$

- Projecting ζ to coordinates corresponding to a subset $S\subseteq [k].$

- Each $\zeta \in \mathcal{C}(f)$ can be transformed by:
 - Permuting the underlying k variables by a permutation π

$$(\zeta_{\pi})_i = \zeta_{\pi(i)} \qquad (\zeta_{\pi})_{ij} = \zeta_{\pi(i)\pi(j)}$$

- Multiplying each variable x_i by a sign $b_i \in \{-1,1\}$

$$(\zeta_b)_i = b_i \cdot \zeta_i \qquad (\zeta_b)_{ij} = b_i b_j \cdot \zeta_{ij}$$

- Projecting ζ to coordinates corresponding to a subset $S \subseteq [k]$.
- For $S \subseteq [k]$, $\pi: S \to S$, $b \in \{-1,1\}^S$, let $\Lambda_{S,\pi,b}$ denote the measure obtained by transforming each point in support of Λ as above.

- Each $\zeta \in \mathcal{C}(f)$ can be transformed by:
 - Permuting the underlying k variables by a permutation π

$$(\zeta_{\pi})_i = \zeta_{\pi(i)} \qquad (\zeta_{\pi})_{ij} = \zeta_{\pi(i)\pi(j)}$$

- Multiplying each variable x_i by a sign $b_i \in \{-1,1\}$

$$(\zeta_b)_i = b_i \cdot \zeta_i \qquad (\zeta_b)_{ij} = b_i b_j \cdot \zeta_{ij}$$

- Projecting ζ to coordinates corresponding to a subset $S \subseteq [k]$.
- For $S \subseteq [k]$, $\pi: S \to S$, $b \in \{-1,1\}^S$, let $\Lambda_{S,\pi,b}$ denote the measure obtained by transforming each point in support of Λ as above.
- If Λ is supported only on 0, then so is each $\Lambda_{S,\pi,b}$. If Λ is supported only on (say) $(1,\ldots,1)$ then $\Lambda_{[k],\mathrm{id},b}$ is supported only on the point $(b_1,\ldots,b_k,b_1\cdot b_2,\ldots,b_{k-1}\cdot b_k)$

Our Characterization

- Recall that $f:\{-1,1\}^k o \{0,1\}$ can be written as

$$f(x) = \sum_{S \subseteq [k]} \widehat{f}(S) \cdot \prod_{i \in S} x_i = \rho(f) + \sum_{t=1}^k \sum_{|S|=t} \widehat{f}(S) \cdot \prod_{i \in S} x_i$$

Our Characterization

- Recall that $f: \{-1,1\}^k \to \{0,1\}$ can be written as

$$f(x) = \sum_{S \subseteq [k]} \widehat{f}(S) \cdot \prod_{i \in S} x_i = \rho(f) + \sum_{t=1}^k \sum_{|S|=t} \widehat{f}(S) \cdot \prod_{i \in S} x_i$$

- [KTW 13*]: f is strongly approximation resistant if and only if there exists a measure Λ on $\mathcal{C}(f)$ such that for all $t=1,\ldots,k$

$$\sum_{|S|=t} \sum_{\pi:S\to S} \sum_{b\in\{-1,1\}^S} \widehat{f}(S) \cdot \left(\prod_{i\in S} b_i\right) \cdot \Lambda_{S,\pi,b} \equiv 0$$

Our Characterization

- Recall that $f: \{-1,1\}^k \to \{0,1\}$ can be written as

$$f(x) = \sum_{S \subseteq [k]} \widehat{f}(S) \cdot \prod_{i \in S} x_i = \rho(f) + \sum_{t=1}^k \sum_{|S|=t} \widehat{f}(S) \cdot \prod_{i \in S} x_i$$

- [KTW 13*]: f is strongly approximation resistant if and only if there exists a measure Λ on $\mathcal{C}(f)$ such that for all $t=1,\ldots,k$

$$\sum_{|S|=t} \sum_{\pi:S\to S} \sum_{b\in\{-1,1\}^S} \widehat{f}(S) \cdot \left(\prod_{i\in S} b_i\right) \cdot \Lambda_{S,\pi,b} \equiv 0$$

- If |S| = t, then $\Lambda_{S,\pi,b}$ is a measure on $\mathbb{R}^{t+\binom{t}{2}}$. For each t, above expression is a linear combination of such measures.

- Similar game also used by O'Donnell and Wu for Max-Cut.

- Similar game also used by O'Donnell and Wu for Max-Cut.
- Hardness player tries to design an integrality-gap instance. Each constraint has local distribution μ with moments given by $\zeta(\mu)$. Plays measure Λ on $\mathcal{C}(f)$ (corresponds to instance).

- Similar game also used by O'Donnell and Wu for Max-Cut.
- Hardness player tries to design an integrality-gap instance. Each constraint has local distribution μ with moments given by $\zeta(\mu)$. Plays measure Λ on $\mathcal{C}(f)$ (corresponds to instance).
- Algorithm player tries to round by first projecting to random d-dimensional Gaussian. Plays rounding strategy $\psi: \mathbb{R}^d \to \{-1,1\}$. (d=k+1 suffices)

- Similar game also used by O'Donnell and Wu for Max-Cut.
- Hardness player tries to design an integrality-gap instance. Each constraint has local distribution μ with moments given by $\zeta(\mu)$. Plays measure Λ on $\mathcal{C}(f)$ (corresponds to instance).
- Algorithm player tries to round by first projecting to random d-dimensional Gaussian. Plays rounding strategy $\psi: \mathbb{R}^d \to \{-1,1\}$. (d=k+1 suffices)
- Value = |
 ho(f)| Expected fraction of constraints satisfied by $\psi|$

- Similar game also used by O'Donnell and Wu for Max-Cut.
- Hardness player tries to design an integrality-gap instance. Each constraint has local distribution μ with moments given by $\zeta(\mu)$. Plays measure Λ on $\mathcal{C}(f)$ (corresponds to instance).
- Algorithm player tries to round by first projecting to random d-dimensional Gaussian. Plays rounding strategy $\psi: \mathbb{R}^d \to \{-1,1\}$. (d=k+1 suffices)
- Value = |
 ho(f)| Expected fraction of constraints satisfied by $\psi|$
- Value > 0 implies (a distribution over) rounding strategies which show that predicate is not strongly approximation resistant. (since every instance corresponds to a Λ)

- A random constraint in the instance corresponds to $\zeta\sim\Lambda.$

- A random constraint in the instance corresponds to $\zeta\sim\Lambda.$
- When Algorithm player tries to round SDP solution, for she sees vectors with inner products according to ζ .

- A random constraint in the instance corresponds to $\zeta\sim\Lambda.$
- When Algorithm player tries to round SDP solution, for she sees vectors with inner products according to ζ .
- Projecting gives Gaussians y_1, \ldots, y_k with correlation matrix corresponding to ζ $(y_1, \ldots, y_k \sim N(\zeta))$.

- A random constraint in the instance corresponds to $\zeta \sim \Lambda$.
- When Algorithm player tries to round SDP solution, for she sees vectors with inner products according to ζ .
- Projecting gives Gaussians y_1, \ldots, y_k with correlation matrix corresponding to ζ $(y_1, \ldots, y_k \sim N(\zeta))$.
- Expected fraction of constraints satisfied

$$\mathbb{E}_{\zeta \sim \Lambda} \mathbb{E}_{y_1, \dots, y_k \sim N(\zeta)} \left[f(\psi(y_1), \dots, \psi(y_k)) \right]$$

$$= \rho(f) + \mathbb{E}_{\zeta \sim \Lambda} \mathbb{E}_{y_1, \dots, y_k \sim N(\zeta)} \left[\sum_{S \neq \emptyset} \widehat{f}(S) \cdot \prod_{i \in S} \psi(y_i) \right]$$

- A random constraint in the instance corresponds to $\zeta\sim\Lambda.$
- When Algorithm player tries to round SDP solution, for she sees vectors with inner products according to ζ .
- Projecting gives Gaussians y_1, \ldots, y_k with correlation matrix corresponding to ζ $(y_1, \ldots, y_k \sim N(\zeta))$.
- Expected fraction of constraints satisfied

$$\mathbb{E}_{\zeta \sim \Lambda} \mathbb{E}_{y_1, \dots y_k \sim N(\zeta)} [f(\psi(y_1), \dots, \psi(y_k))]$$

$$= \rho(f) + \mathbb{E}_{\zeta \sim \Lambda} \mathbb{E}_{y_1, \dots y_k \sim N(\zeta)} \left[\sum_{S \neq \emptyset} \widehat{f}(S) \cdot \prod_{i \in S} \psi(y_i) \right]$$

- Value = $\left| \mathbb{E}_{\zeta \sim \Lambda} \mathbb{E}_{y_1, \dots y_k \sim N(\zeta)} \left[\sum_{S \neq \emptyset} \widehat{f}(S) \cdot \prod_{i \in S} \psi(y_i) \right] \right|$.

- Value
$$= \left| \mathbb{E}_{\zeta \sim \Lambda} \mathbb{E}_{y_1, \dots y_k \sim N(\zeta)} \left[\sum_{S \neq \emptyset} \widehat{f}(S) \cdot \prod_{i \in S} \psi(y_i) \right] \right|.$$

- Value
$$= \left| \mathbb{E}_{\zeta \sim \Lambda} \mathbb{E}_{y_1, \dots y_k \sim N(\zeta)} \left[\sum_{S \neq \emptyset} \widehat{f}(S) \cdot \prod_{i \in S} \psi(y_i) \right] \right|.$$

- There exists (distribution over) Λ which gives value 0 for all ψ .

- Value
$$= \left| \mathbb{E}_{\zeta \sim \Lambda} \mathbb{E}_{y_1, \dots y_k \sim N(\zeta)} \left[\sum_{S \neq \emptyset} \widehat{f}(S) \cdot \prod_{i \in S} \psi(y_i) \right] \right|.$$

- There exists (distribution over) Λ which gives value 0 for all ψ .
- Value can be viewed as a polynomial in the infinitely many variables $\psi(y)$ for $y \in \mathbb{R}^d$ which is zero for all assignments ψ .

- Value
$$= \left| \mathbb{E}_{\zeta \sim \Lambda} \mathbb{E}_{y_1, \dots y_k \sim N(\zeta)} \left[\sum_{S \neq \emptyset} \widehat{f}(S) \cdot \prod_{i \in S} \psi(y_i) \right] \right|.$$

- There exists (distribution over) Λ which gives value 0 for all ψ .
- Value can be viewed as a polynomial in the infinitely many variables $\psi(y)$ for $y \in \mathbb{R}^d$ which is zero for all assignments ψ .
- All coefficients must be 0. Coefficients are linear combinations of integrals of $\Lambda_{S,\pi,b}$ w.r.t. some Gaussian densities.

- Value
$$= \left| \mathbb{E}_{\zeta \sim \Lambda} \mathbb{E}_{y_1, \dots y_k \sim N(\zeta)} \left[\sum_{S \neq \emptyset} \widehat{f}(S) \cdot \prod_{i \in S} \psi(y_i) \right] \right|.$$

- There exists (distribution over) Λ which gives value 0 for all ψ .
- Value can be viewed as a polynomial in the infinitely many variables $\psi(y)$ for $y \in \mathbb{R}^d$ which is zero for all assignments ψ .
- All coefficients must be 0. Coefficients are linear combinations of integrals of $\Lambda_{S,\pi,b}$ w.r.t. some Gaussian densities.
- Need to conclude integrals are zero only if the corresponding linear combinations are 0. Degree t coefficients give condition at level t.

- Value
$$= \left| \mathbb{E}_{\zeta \sim \Lambda} \mathbb{E}_{y_1, \dots y_k \sim N(\zeta)} \left[\sum_{S \neq \emptyset} \widehat{f}(S) \cdot \prod_{i \in S} \psi(y_i) \right] \right|.$$

- There exists (distribution over) Λ which gives value 0 for all ψ .
- Value can be viewed as a polynomial in the infinitely many variables $\psi(y)$ for $y \in \mathbb{R}^d$ which is zero for all assignments ψ .
- All coefficients must be 0. Coefficients are linear combinations of integrals of $\Lambda_{S,\pi,b}$ w.r.t. some Gaussian densities.
- Need to conclude integrals are zero only if the corresponding linear combinations are 0. Degree t coefficients give condition at level t.
- Bulk of the work in analyzing sequence of finite games and coefficients of corresponding polynomials.

Concluding Remarks

- We also characterize
 - Approximation resistance for odd predicates (including threshold functions passing through origin).
 - Approximation resistance for *k*-partite instances (all predicates).
 - Sherali-Adams LP gaps for $\omega(1)$ levels (all predicates).

Concluding Remarks

- We also characterize
 - Approximation resistance for odd predicates (including threshold functions passing through origin).
 - Approximation resistance for k-partite instances (all predicates).
 - Sherali-Adams LP gaps for $\omega(1)$ levels (all predicates).
- Problem: The characterization is recursively enumerable, but is it decidable? Can Λ always be finitely supported?

Concluding Remarks

- We also characterize
 - Approximation resistance for odd predicates (including threshold functions passing through origin).
 - Approximation resistance for k-partite instances (all predicates).
 - Sherali-Adams LP gaps for $\omega(1)$ levels (all predicates).
- Problem: The characterization is recursively enumerable, but is it decidable? Can Λ always be finitely supported?
- Problem: Strong Approximation Resistance vs. Approximation Resistance.

Thank You

Questions?