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Max-k-CSP

- n Boolean variables, m constraints (each on k variables)

- Satisfy as many as possible.

Max-3-SAT

x1V x2 V Xi9
x3 V Xg V X3

x5 V X7 V Xog

Max-Cut
1
X2 X1 # X2
X, X2 # X5
X3 7# X4
X5 X7 X3

X6

One of the most fundamental classes of optimization problems.
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Max-3-XOR: Linear equations modulo 2 (in £1 variables)

X5 Xg X6 = 1 X5 X9 X6 = 1
X6 X12 X2 = —1 X6 (—x12) - Xx00 = 1
X7 Xg X5 = —1 ’ x7-xg- (—x15) = 1

Max-k-CSP(f): Given predicate f : {—1,1}* — {0,1}. Each
constraint is f applied to some k (possibly negated) variables.
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Approximating Max-k-CSP

Relax the problem of finding maximum fraction of constraints
satisfiable.

<46 >0
(v>1)

- Can solve for all & = Can approximate within factor ~.

- Hard to solve for some § = Hard to approximate within
factor ~.
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Approximation Resistance

Let p(f) = E,[f(x)] be the fraction of constraints satisfied by a
random assignment.

p(3-SAT) = 7/8, p(3-XOR) = 1/2

f is approximation resistant if it is (NP/UG-) hard to distinguish

| [
I [

< p(f)+e >1—¢

Captures the notion of when is it hard to do better than a random
assignment.
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(Sufficient) Conditions for Approximation Resistance

- [Hastad 01]: k-SAT and k-XOR are approximation resistant.

- [Hast 05]: Out of 400 predicates on 4 variables, classified 79 to be
approximation resistant and 275 to be not so.

- [ST 06*, Chan 12]: If f~1(1) corresponds to a “nice” subspace of
5 (AND of XORs). (Uniform distribution on (1) is a balanced
and pairwise independent distribution on {—1, 1})

[AM 09*]: If there exists any balanced and pairwise independent
distribution on {—1,1}* supported on f=1(1).

[AK 13*]: Characterization when f is even and instance is required
to be k-partite.
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Strong Approximation Resistance

f is approximation resistant if it is (NP/UG-) hard to distinguish
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- f is strongly approximation resistant if it is (NP/UG-) hard to
distinguish

[ i
1 il

() — e p(F) +¢] >1-e

When is it hard to do anything different from a random assignment.

- Equivalent to approximation resistance for odd predicates. Almost
all previous results prove strong approximation resistance.
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A partial characterization by [Rag 08] and [RS 09]
- [Rag 08*]: f is approximation resistant iff e > O there exists a 1 — ¢
vs. p(f) + € integrality gap instance for a certain SDP.

- [RS 09]: 1 — € vs. p(f) + € integrality gap instance for above SDP
needs to have size at most exp(exp(1/€)).

- Above argument also works for strong approximation resistance.
Gives a recursively enumerable condition.

- But what properties of f give rise to gap instances?

- Is it just properties of f or is the topology of the instance also
important? (Hint: Just f)
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The Austrin-Mossel condition in a new language

For a distribution p on {—1,1}%, let ((u) € R () denote
the vector of first and second moments

G =Exoplxi] G = Exaplxi - x]

- Let C(f) be the convex polytope

C(f) = {C(u) | u is supported on fﬁl(l)}.

[AM 09*]: fis (strongly) approximation resistant if 0 € C(f).

Our condition is in terms of existence of a measure A on C(f)
with certain symmetry properties.
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Transformations of a measure A on C(f)

- Each ¢ € C(f) can be transformed by:

- Permuting the underlying k variables by a permutation 7

()i =Gy (Ga)if = Ca(iynlh)
- Multiplying each variable x; by a sign b; € {-1,1}

(Cb)i = b - G (Cb)ij = bibj - Gj

- Projecting ¢ to coordinates corresponding to a subset S C [].

- For SC[k], m:S— S, be {—1,1}°, let As . 5 denote the measure
obtained by transforming each point in support of A as above.

- If Ais supported only on 0, then so is each As . If Ais supported
only on (say) (1,...,1) then Ayq,ia,p is supported only on the point
(b1s. .. bi, by~ boy ... b1 - by)
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Our Characterization

- Recall that f : {—1,1}* — {0,1} can be written as

k
fx) = D FS) []x = o))+ DD (S - I x

SCIK] ies t=1|5|=t ies

- [KTW 13*]: f is strongly approximation resistant if and only if there
exists a measure A on C(f) such that forall t =1,... k

Y Y% w9 (Ie) nses = 0

|S|=t m:S5—=S be{-1,1}%

t
- If |S| = t, then As r p is a measure on R(3). For each t, above
expression is a linear combination of such measures.
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The (infinite) two-player game

- Similar game also used by O'Donnell and Wu for Max-Cut.

- Hardness player tries to design an integrality-gap instance. Each
constraint has local distribution p with moments given by ((u).
Plays measure A on C(f) (corresponds to instance).

- Algorithm player tries to round by first projecting to random
d-dimensional Gaussian. Plays rounding strategy 1) : RY — {—1,1}.
(d = k + 1 suffices)

- Value = |p(f) — Expected fraction of constraints satisfied by |
- Value > 0 implies (a distribution over) rounding strategies which

show that predicate is not strongly approximation resistant.
(since every instance corresponds to a A)
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Value of the game

A random constraint in the instance corresponds to { ~ A.

When Algorithm player tries to round SDP solution, for she sees
vectors with inner products according to (.

Projecting gives Gaussians yi, ..., yx with correlation matrix
corresponding to ¢ ()1, -, ¥k ~ N({)).

Expected fraction of constraints satisfied

EcnBy, yemne) [F(0 (1), -5 (k)]

= p(f) + EconBy . yonie) | D FS) - [T v)

S#0 i€S

Value = |E¢unEy, y,on() {Zsyam?(S)'H;es@(Yf)”-



Obtaining conditions on A when value = 0

- Value = |E¢cnEy, .y ~no) [Zs;&@?(s)'nies w(}’i)”-



Obtaining conditions on A when value = 0

- Value = |EcoaEy, yono) [Z$¢0?(S)'Hiesw(}/i)”-

- There exists (distribution over) A which gives value 0 for all .



Obtaining conditions on A when value = 0

- Value = |E¢cunlEy, y~n(o) [ZS;&@ ?(S) lies ¢(Yi)} ‘

- There exists (distribution over) A which gives value 0 for all .

- Value can be viewed as a polynomial in the infinitely many variables
¥(y) for y € RY which is zero for all assignments 1.



Obtaining conditions on A when value = 0

- Value = |E¢cunlEy, y~n(o) [ZS;&@ ?(S) lies ¢(Yi)} ‘

- There exists (distribution over) A which gives value 0 for all 9.

- Value can be viewed as a polynomial in the infinitely many variables
¥(y) for y € RY which is zero for all assignments 1.

- All coefficients must be 0. Coefficients are linear combinations of
integrals of As » p w.r.t. some Gaussian densities.



Obtaining conditions on A when value = 0

Value = |E¢cnEy, .y ~n(c) [ZS;&@ ?(5) lies ¢(Yi)} ‘

There exists (distribution over) A which gives value 0 for all .

Value can be viewed as a polynomial in the infinitely many variables
¥(y) for y € RY which is zero for all assignments 1.

All coefficients must be 0. Coefficients are linear combinations of
integrals of As » p w.r.t. some Gaussian densities.

Need to conclude integrals are zero only if the corresponding linear
combinations are 0. Degree t coefficients give condition at level t.



Obtaining conditions on A when value = 0

Value = |E¢nEy, . ~n(e) [Zs;e@?(S)'ersw(yl')”-

There exists (distribution over) A which gives value 0 for all .

Value can be viewed as a polynomial in the infinitely many variables
¥(y) for y € RY which is zero for all assignments 1.

All coefficients must be 0. Coefficients are linear combinations of
integrals of As » p w.r.t. some Gaussian densities.
Need to conclude integrals are zero only if the corresponding linear

combinations are 0. Degree t coefficients give condition at level t.

Bulk of the work in analyzing sequence of finite games and
coefficients of corresponding polynomials.
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Concluding Remarks

- We also characterize

- Approximation resistance for odd predicates (including
threshold functions passing through origin).

- Approximation resistance for k-partite instances (all
predicates).

- Sherali-Adams LP gaps for w(1) levels (all predicates).

- Problem: The characterization is recursively enumerable, but is it
decidable? Can A always be finitely supported?

- Problem: Strong Approximation Resistance vs. Approximation
Resistance.
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