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Max-k-CSP

- n Boolean variables, m constraints (each on k variables)
- Satisfy as many as possible.

Max-3-SAT

x1 ∨ x22 ∨ x19

x3 ∨ x9 ∨ x23
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...

Max-Cut

x6

x5 x7 x3

x4

x2

x1
x1 6= x2
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x3 6= x4
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One of the most fundamental classes of optimization problems.
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Max-k-CSP

Max-3-XOR: Linear equations modulo 2 (in ±1 variables)

x5 · x9 · x16 = 1
x6 · x12 · x22 = −1
x7 · x8 · x15 = −1

...

−→

x5 · x9 · x16 = 1
x6 · (−x12) · x22 = 1
x7 · x8 · (−x15) = 1

...

Max-k-CSP(f): Given predicate f : {−1, 1}k → {0, 1}. Each
constraint is f applied to some k (possibly negated) variables.

Ci ≡ f
(
xi1 · b

(i)
1 , . . . , xik · b

(i)
k

)
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Approximating Max-k-CSP

Relax the problem of finding maximum fraction of constraints
satisfiable.

≤ θ > γ · θ
(γ ≥ 1)

- Can solve for all θ =⇒ Can approximate within factor γ.

- Hard to solve for some θ =⇒ Hard to approximate within
factor γ.
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Approximation Resistance

- Let ρ(f ) = Ex [f (x)] be the fraction of constraints satisfied by a
random assignment.

- ρ(3-SAT) = 7/8, ρ(3-XOR) = 1/2

- f is approximation resistant if it is (NP/UG-) hard to distinguish

≤ ρ(f ) + ε ≥ 1− ε

- Captures the notion of when is it hard to do better than a random
assignment.
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(Sufficient) Conditions for Approximation Resistance

- [Håstad 01]: k-SAT and k-XOR are approximation resistant.

- [Hast 05]: Out of 400 predicates on 4 variables, classified 79 to be
approximation resistant and 275 to be not so.

- [ST 06∗, Chan 12]: If f −1(1) corresponds to a “nice” subspace of
Fk

2 (AND of XORs).

(Uniform distribution on f −1(1) is a balanced
and pairwise independent distribution on {−1, 1}k)

- [AM 09∗]: If there exists any balanced and pairwise independent
distribution on {−1, 1}k supported on f −1(1).

- [AK 13∗]: Characterization when f is even and instance is required
to be k-partite.
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Strong Approximation Resistance

- f is approximation resistant if it is (NP/UG-) hard to distinguish

≤ ρ(f ) + ε ≥ 1− ε

- f is strongly approximation resistant if it is (NP/UG-) hard to
distinguish

[ρ(f )− ε, ρ(f ) + ε] ≥ 1− ε

- When is it hard to do anything different from a random assignment.

- Equivalent to approximation resistance for odd predicates. Almost
all previous results prove strong approximation resistance.
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A partial characterization by [Rag 08] and [RS 09]

- [Rag 08∗]: f is approximation resistant iff ∀ε > 0 there exists a 1− ε
vs. ρ(f ) + ε integrality gap instance for a certain SDP.

- [RS 09]: 1− ε vs. ρ(f ) + ε integrality gap instance for above SDP
needs to have size at most exp(exp(1/ε)).

- Above argument also works for strong approximation resistance.
Gives a recursively enumerable condition.

- But what properties of f give rise to gap instances?

- Is it just properties of f or is the topology of the instance also
important?

(Hint: Just f )
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The Austrin-Mossel condition in a new language

- For a distribution µ on {−1, 1}k , let ζ(µ) ∈ Rk+(k
2) denote

the vector of first and second moments

ζi = Ex∼µ[xi ] ζij = Ex∼µ[xi · xj ]

- Let C(f ) be the convex polytope

C(f ) =
{
ζ(µ) | µ is supported on f −1(1)

}
.

- [AM 09∗]: f is (strongly) approximation resistant if 0 ∈ C(f ).

- Our condition is in terms of existence of a measure Λ on C(f )
with certain symmetry properties.
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Transformations of a measure Λ on C(f )

- Each ζ ∈ C(f ) can be transformed by:

- Permuting the underlying k variables by a permutation π

(ζπ)i = ζπ(i) (ζπ)ij = ζπ(i)π(j)

- Multiplying each variable xi by a sign bi ∈ {−1, 1}

(ζb)i = bi · ζi (ζb)ij = bibj · ζij

- Projecting ζ to coordinates corresponding to a subset S ⊆ [k].

- For S ⊆ [k], π : S → S, b ∈ {−1, 1}S , let ΛS,π,b denote the measure
obtained by transforming each point in support of Λ as above.

- If Λ is supported only on 0, then so is each ΛS,π,b. If Λ is supported
only on (say) (1,. . . ,1) then Λ[k],id,b is supported only on the point
(b1, . . . , bk , b1 · b2, . . . , bk−1 · bk)
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Our Characterization

- Recall that f : {−1, 1}k → {0, 1} can be written as

f (x) =
∑

S⊆[k]

f̂ (S) ·
∏
i∈S

xi = ρ(f ) +
k∑

t=1

∑
|S|=t

f̂ (S) ·
∏
i∈S

xi

- [KTW 13∗]: f is strongly approximation resistant if and only if there
exists a measure Λ on C(f ) such that for all t = 1, . . . , k

∑
|S|=t

∑
π:S→S

∑
b∈{−1,1}S

f̂ (S) ·

(∏
i∈S

bi

)
· ΛS,π,b ≡ 0

- If |S| = t, then ΛS,π,b is a measure on Rt+(t
2). For each t, above

expression is a linear combination of such measures.
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The (infinite) two-player game

- Similar game also used by O’Donnell and Wu for Max-Cut.

- Hardness player tries to design an integrality-gap instance. Each
constraint has local distribution µ with moments given by ζ(µ).
Plays measure Λ on C(f ) (corresponds to instance).

- Algorithm player tries to round by first projecting to random
d-dimensional Gaussian. Plays rounding strategy ψ : Rd → {−1, 1}.
(d = k + 1 suffices)

- Value = |ρ(f ) − Expected fraction of constraints satisfied by ψ|

- Value > 0 implies (a distribution over) rounding strategies which
show that predicate is not strongly approximation resistant.
(since every instance corresponds to a Λ)
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Value of the game
- A random constraint in the instance corresponds to ζ ∼ Λ.

- When Algorithm player tries to round SDP solution, for she sees
vectors with inner products according to ζ.

- Projecting gives Gaussians y1, . . . , yk with correlation matrix
corresponding to ζ (y1, . . . , yk ∼ N(ζ)).

- Expected fraction of constraints satisfied

Eζ∼ΛEy1,...yk∼N(ζ) [f (ψ(y1), . . . , ψ(yk))]

= ρ(f ) + Eζ∼ΛEy1,...yk∼N(ζ)

∑
S 6=∅

f̂ (S) ·
∏
i∈S

ψ(yi )


- Value =

∣∣∣Eζ∼ΛEy1,...yk∼N(ζ)

[∑
S 6=∅ f̂ (S) ·

∏
i∈S ψ(yi )

]∣∣∣.
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Obtaining conditions on Λ when value = 0

- Value =
∣∣∣Eζ∼ΛEy1,...yk∼N(ζ)

[∑
S 6=∅ f̂ (S) ·

∏
i∈S ψ(yi )

]∣∣∣.

- There exists (distribution over) Λ which gives value 0 for all ψ.

- Value can be viewed as a polynomial in the infinitely many variables
ψ(y) for y ∈ Rd which is zero for all assignments ψ.

- All coefficients must be 0. Coefficients are linear combinations of
integrals of ΛS,π,b w.r.t. some Gaussian densities.

- Need to conclude integrals are zero only if the corresponding linear
combinations are 0. Degree t coefficients give condition at level t.

- Bulk of the work in analyzing sequence of finite games and
coefficients of corresponding polynomials.
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Concluding Remarks

- We also characterize
- Approximation resistance for odd predicates (including
threshold functions passing through origin).

- Approximation resistance for k-partite instances (all
predicates).

- Sherali-Adams LP gaps for ω(1) levels (all predicates).

- Problem: The characterization is recursively enumerable, but is it
decidable? Can Λ always be finitely supported?

- Problem: Strong Approximation Resistance vs. Approximation
Resistance.
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