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Studies on Model Distance Normalization Approach in

Text-independent Speaker Verification
DONG Yuan1 LU Liang1 ZHAO Xian-Yu2 ZHAO Jian1

Abstract Model distance normalization (D-Norm) is one of the useful score normalization approaches in automatic speaker
verification (ASV) systems. The main advantage of D-Norm lies in that it does not need any additional speech data or external
speaker population, as opposed to the other state-of-the-art score normalization approaches. But still, it has some drawbacks, e.g.,
the Monte-Carlo based Kullback-Leibler distance estimation approach in the conventional D-Norm approach is a time consuming and
computation costly task. In this paper, D-Norm was investigated and its principles were explored from a perspective different from
the original one. In addition, this paper also proposed a simplified approach to perform D-Norm, which used the upper bound of the
KL divergence between two statistical speaker models as the measure of model distance. Experiments on NIST 2006 SRE corpus
showed that the simplified approach of D-Norm achieves similar system performance as the conventional one while the computational
complexity is greatly reduced.

Key words Gaussian mixture model (GMM), Kullback-Leibler distance, model distance normalization, speaker recognition,
speaker verification

Speaker verification is a process of determining whether
an utterance is spoken by a claimant or not. For this task,
the Gaussian mixture model (GMM)-universal background

mode (UBM)[1] framework has become the dominant ap-
proach over the past decade and achieves state-of-the-
art system performance, whereas support vector machine
(SVM) also has been proved to be an effective method for

speaker recognition in recent years[2−4]. In classical GMM-
UBMs, a speaker model is adapted by maximum a posteri-
ori (MAP) from universal background model (UBM), and
in the test phase, decision making is performed by the log-
likelihood ratio (LLR) detection, in which the LLR is com-
pared with the pre-established global threshold to deter-
mine whether to accept the claimed identity or not. How-
ever, due to the score variability caused by various factors
(environment noise, mismatch between testing and training
data, inter- and intra-speaker divergence, etc), an appropri-
ate speaker independent global threshold is usually difficult
to set for decision making.

To cope with this problem, various compensation tech-
niques for channel effects and mismatch between training
and testing data have been proposed, which can be gener-
ally divided into three categories, namely, feature domain,
channel domain, and score domain compensation. Feature
domain compensation is aimed at removing the channel ef-
fects from the feature vectors prior to model training or
verification, e.g., cepstral mean subtraction (CMS), RelA-
tive SpecTral (RASTA), etc. In model domain, the aim
is to modify verification models to minimize the effects
of varying channels, e.g., speaker model synthesis (SMS),

eigenchannels[5] for GMM-UBM based system or nuisance
attribute projection (NAP)[6] for SVM based system, etc.
And finally, score domain compensation attempts to re-
move model score scales and shifts caused by varying in-
put channel conditions. Examples of this includes widely
used score normalization approaches such as H-Norm[7], T-
Norm[8], Z-Norm[9], etc. For different effects that cause
the score variability can be reduced by corresponding score
normalization approach, for example, H-Norm is proposed
to handle the variability caused by different handset types,
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and T-Norm is mean to reduce the divergence between dif-
ferent testing utterances. Z-Norm is an approach to nor-
malize the speaker dependent scores to a uniform distri-
bution. Score normalization is an effective approach for
speaker verification and can improve the system perfor-
mance significantly in most cases. However, the fatal draw-
back of the above score normalization approaches is that
they bring heavy computational burden to the verification
system and needs large amount of additional development
speech data, which, in some cases, is difficult to obtain.

Another interesting score normalization approach,
namely, model distance normalization (D-Norm)[10], is a
special one compared with those above, which does not
need any additional speech data or external speaker pop-
ulation, but still can achieve promising system perfor-
mance gains in most cases. This advantage of D-Norm
makes it more practical in reality. In original D-Norm,
the model distance is estimated by the Kullback-Leibler
(KL) divergence through a Monte-Carlo method, which,
however, needs much additional time and computation. In
this paper, D-Norm was re-investigated systematically and
its principles were presented in another perspective, which
is more logically reasonable. In addition, a simplified ap-
proach to perform D-Norm was also proposed, which used
the upper bound of the KL divergence between two models
as the measure of model distance. Experiments on NIST
2006 SRE corpus showed that the simplified approach of
D-Norm could achieve similar system performance gains as
the traditional one while the computational complexity was
greatly reduced.

The rest of the paper is organized as follows: in
Section 1, some preliminary knowledge is presented, and
in Section 2, principles of model distance normalization are
discussed and a new simplification approach for perform-
ing D-Norm is proposed. Some experimental results on
2006 NIST SRE corpus are given in Section 3. Section 4
concludes the paper with a summary.

1 Preliminaries

1.1 GMM-UBM

GMM-UBM is the predominant approach used in
speaker recognition systems, particularly for text-
independent task[1]. According to this approach, a UBM
is trained using the EM (Expectation-maximization)
algorithm on a larger quantity of exclusive speech, and the
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target speaker model is adapted from the gender specific
UBM using MAP estimation. For a D-dimensional feature
vector xxx, the probability density of xxx given a speaker model
λ, which has M Gaussian mixtures is defined as

p(xxx|λ) =

M∑
i=1

wipi(xxx) (1)

The density is a weighted linear combination of M uni-
modal Gaussian densities pi(xxx), which is parameterized
by a mean vector µµµi and a covariance matrix Σi. The
speaker model can be characterized by λ = (wi,µµµi, Σi), i =
1, · · · , M .

Given a GMM model λ, the average log-likelihood of the
test utterance X = {xxx1, · · · ,xxxT } is computed by

LL(X|λ) =
1

T

∑
t

log p(xxxt|λ) (2)

And the log-likelihood ratio (LLR) used for detection is
defined as

LLR(X) = LL(X|λspk)− LL(X|λubm) (3)

where λubm is the UBM model and λspk indicates the
speaker model. LLR(X) is finally compared with the pre-
defined threshold θ to decide whether the utterance pre-
sented is from the claimant or not.

1.2 Kullback-Leibler (KL) divergence

The KL-divergence[11], also known as the relative en-
tropy in the information theory, is commonly used in statis-
tics as a measure of similarity between two density distri-
butions. For two probability density functions f(xxx) and
g(xxx) , the KL-divergence is defined as

D(f‖g) =

∫
f(xxx) log

f(xxx)

g(xxx)
dxxx (4)

KL-divergence is not distance in a strict sense because it
usually does not verify the symmetry condition and triangle
inequality. However, the divergence satisfies the following
three properties:

1) Self-similarity: D(f‖f) = 0;
2) Self-identification: D(f‖g) = 0 only if f = g;
3) Positivity: D(f‖g) ≥ 0 for all f, g.
The KL divergence is used in many aspects of speech

and image recognition as a kind of similarity or distance
measurement. For two d-dimensional Gaussians, the KL
divergence has a closed form expression:

D(N(·;µµµ, C)‖N(·; µ̃µµ, C̃)) =

1

2

[
log

detC̃

detC
− d + tr(C̃−1C) + (µµµ− µ̃µµ)TC̃−1(µµµ− µ̃µµ)

]
(5)

whereas for two GMMs, no such closed form expression
exists.

2 Model distance normalization

2.1 Principles of model distance normalization

As discussed in the introduction, the purpose of score
normalization is to alleviate the variability caused by nu-
merous reasons, and currently, most normalization ap-
proaches are achieved by rescaling the impostor score distri-
bution of each speaker to a normal distribution (zero mean
and unit variance), just as

LLRNorm =
LLR(X)− µNorm

σNorm
(6)

where µNorm and σNorm are the mean and standard devi-
ation of the impostor scores estimated through statistical
approach, respectively by different estimation approaches
of the two parameters µNorm and σNorm , corresponding
score normalization approaches will be obtained, e.g. Z-
Norm, T-Norm, etc.

Reference [10] proposed the model distance normal-
ization (D-Norm) based on some experimental observa-
tions, in which the impostor score had a correlation with
KL(λspk‖λubm) (It is the KL divergence between two
GMMs defined as (4)). However, in this paper, it is pro-
posed based on the following proposition (before being val-
idated, it is only a hypothesis): the distance between the
speaker model λspk and background model λubm also causes
the variability of the final log-likelihood score. More con-
cretely, the final log-likelihood score LLR(X) in (3) will
also depend on the value of D(λspk, λubm), at least to some
extent (for many other factors it will also affect the final
score), in which D(·, ·) is a kind of distance measure be-
tween two GMMs. Moreover, it is believed that a small
value of D(λspk, λubm), which means the speaker model is
more similar to the UBM, more likely results in a small
range of LLR for a set of test utterances. Contrarily, a
large distance between λspk and λubm will also tend to en-
large the range of LLR. Thus, if the above proposition
is valid, then it is straightforward that the LLR can be
rescaled by the model distance D(λspk, λubm) in order to
eliminate the variability caused by this kind of distance
divergence, which is what D-Norm exactly does.

Thus, before the introduction of the technical approach
about D-Norm, it is necessary to validate the presupposi-
tion discussed above. In addition, an appropriate distance
measure approach is also needed to estimate the value of
D(λspk, λubm). Since λspk and λubm are two statistical
models, just as the conventional approach, the commonly
used Kullback-Leibler (KL) divergence, was used in this
paper to estimate D(λspk, λubm). In the following subsec-
tions, we will first demonstrate the reasonability of D-Norm
approach (theoretically and by some experiments) and then
introduce the technical approach of performing D-Norm.

2.2 Relationship between LLLLLLRRR and KL divergence

To explain the principles of model distance normaliza-
tion, it is meaningful to investigate some relationship be-
tween the KL divergence and the log-likelihood ratio. For
Gaussian mixtures, a closed form expression for KL diver-
gence only exists when the number of Gaussian mixtures is
1. Thus, we will only use one Gaussian mixture to perform
our deduction in the next subsection. And for simplicity,
the formulas are based on mono-dimensional input data, as
the extension to multi-dimensional data is straightforward.

Let g = N(·; µg, Σg) be the Gaussian distribution for
the target, and f = N(·; µf , Σf ) be the Gaussian distribu-
tion of the UBM. Give a test utterance, X = o1, · · · , on,
which is also supposed to obey a Gaussian distribution
h = N(·; µh, Σh). The expected log-likelihood LL(X|g)
of X given the Gaussian distribution g is obtained as

LL(X|g) =
1

n

n∑
i=1

log

[
1

(2πΣg)
1
2

exp(− (oi − µg)2

2Σg
)

]

By developing the square term, it will be of the following
form:

LL(X|g) = − 1

2

[
log(2πΣg) +

1

Σg

(
1

n

n∑
i=1

o2
i−
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2µg
1

n

n∑
i=1

oi + µ2
g

)]
= −1

2

[
log(2πΣg)+

1

Σg
(Σh + µ2

h − 2µhµg + µ2
g)

]
=

− 1

2

[
log(2πΣg) +

Σh

Σg
+

(µh − µg)2

Σg

]
(7)

Similarly, for the background model f , the average log-
likelihood will be

LL(X|f) = −1

2

[
log(2πΣf ) +

Σh

Σf
+

(µh − µf )2

Σf

]
(8)

Thus, the log-likelihood ratio of the test data X to target
model g and background model f can be expressed as

LLR(X) = LL(X|g)− LL(X|f) =

1

2

[
log

(
Σf

Σg

)
+

Σh

Σf
− Σh

Σg
+

(µh − µf )2

Σf
− (µh − µg)2

Σg

]

(9)

Note that for two Gaussians, the KL divergence has the
closed form expression in the form of (5). Having a little
change in (9), we will get the following expression:

LLR(X) =
1

2

[
log

(
Σf

Σh

Σh

Σg

)
+ 1− 1 +

Σh

Σf
− Σh

Σg
+

(µh − µf )2

Σf
− (µh − µg)2

Σg

]
=

1

2

[
log

(
Σf

Σh

)
− 1 +

Σh

Σg
+

(µh − µf )2

Σf

]
−

1

2

[
log

(
Σg

Σh

)
− 1 +

Σh

Σf
+

(µh − µf )2

Σg

]
=

D(h‖f)−D(h‖g) (10)

Unfortunately, since the KL divergence does not satisfy the
property of triangle inequality, we cannot further deduct
the following inequality from (10)

LLR(X) = D(h‖f)−D(h‖g) ≤ D(f‖g)

Moreover, the KL divergence of two GMMs is more com-
plicated than that of two Gaussian distributions, and does
not have such closed form expression, but from the deduc-
tion above, we can consider that the range which will be
affected by the KL divergence between two GMMs is a rea-
sonable hypothesis. In the next subsection, we will present
the D-Norm approach, and through the experimental re-
sults further demonstrate the validation of the proposition.

2.3 D-Norm approach description

D-Norm was first proposed by Ben[10], in which the
model distance was described by a simply symmetrized ver-
sion of KL divergence between two statistical models, just
as the following expression shows:

KL2(pa‖pb) = KL(pa‖pb) + KL(pb‖pa) (11)

where pa and pb was two probabilistic models correspond-
ing to two speakers, respectively. And KL(·‖·) denotes the
KL divergence as (4). Obviously, KL2 satisfies the sym-
metry condition, but not the triangle inequality. With the
expression of the model distance, then D-Norm can be per-
formed by

LLRD−Norm =
LLR

KL2(Xl)
(12)

where KL2(Xl) is the symmetrized KL distance corre-
sponding to the speaker Xl. The D-Norm approach looks
tidy in expression, and it also has the advantage as dis-
cussed above, that is, it does not need the additional devel-
opment speaker data or external speaker population. How-
ever, to estimate the value of KL2(Xl) is not an easy task,
since the KL divergence does not have a closed form ex-
pression for two GMMs. Reference [10] gave a Monte-Carlo
method to estimate the KL distances by synthesizing data
that follow the statistical laws of the speaker and UBM
model, which is described as

DMC(f‖g) =
1

n

n∑
i=1

log
f(xxxi)

g(xxxi)
→ D(f‖g)

where {xxxi}n
i=1 are n samples drawn from the prabability

density function (PDF) f . As n → ∞, the Monte-Carlo
method can yield convergence, and it also satisfies the sim-
ilarity property discussed in Section 1. But it has the draw-
back that it is time consuming and computational costly for
a large amount of synthesized data is needed. Additionally,
it cannot hold the property of positivity absolutely, espe-
cially when the amount of synthesized data is small. This
is a relatively serious problem in practice. In the following
subsection, we will introduce another approach to estimate
the value of the KL divergence, which avoids the above
problems.

2.4 D-Norm based on the upper bounds of KL

As for the drawbacks of the Monte-Carlo method based
estimation of the KL distance, in this subsection, a simpli-
fied method of estimating the KL divergence, namely, the
upper bound approach, is introduced as an alternative. It is
based on the work in [12], in which the authors proved that
the KL divergence between two GMMs is upper bounded
by

KL(pa‖pb) ≤KL(wa‖wb)+

N∑
i=1

wa
i KL(N(·;µµµa

i , Σa
i )‖N(·;µµµb

i , Σ
b
i )) (13)

In most of classical GMM-UBM systems, only means of
the speaker model are adapted by MAP, and in this case,
there will be wa = wb and Σa

i = Σb
i , i = 1, · · · , N . Thus,

(13) can be rewritten as

KL2(pa‖pb)l≤
N∑

i=1

wi(µµµ
a
i−µµµb

i )Σ
−1
i (µµµa

i−µµµb
i )

T =D2
UB(µµµa,µµµb)

(14)
where

D2
UB(µµµa,µµµb) =

N∑
i=1

wi(µµµ
a
i −µµµb

i )Σ
−1
i (µµµa

i −µµµb
i )

T (15)

In the case of state-of-the-art speaker verification systems,
the covariance matrices used are diagonal. If we hypothesize
that Σi = diag{σi1,· · ·, σid}, then (15) can be expressed as

D2
UB(µµµa,µµµb) =

N∑
i=1

wi

d∑
j=1

(µa
ij − µb

ij)
2

σ2
ij

(16)

(16) shows that the upper bound of KL divergence D2
UB is

actually a weighted version of the Mahalanobios distance
between two GMM supervectors µµµa and µµµb. It is obvious
that comparing with the Monte-Carlo based KL divergence
estimation approach, D2

UB satisfies the symmetry property
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as well as those showed in Subsection 1.2, namely, the self-
similarity, self-identification, and positivity. Moreover, the
computational cost of D2

UB is relatively small. In this pa-
per, we will not discuss and compare the two methods in
depth, for more information about this, please refer to [13].

In this case, if we use the upper bond D2
UB as the dis-

tance measure of two speaker models, then the D-Norm can
be performed by

LLRD−Norm =
LLR

D2
UB(µµµspk,µµµUBM )

(17)

In the following section, some experiments are performed
to examine the performance of the D-Norm approach dis-
cussed above, and a comparison with the conventional one
will also be presented. In addition, the proposition for D-
Norm is also investigated from some experiment observa-
tions, and the result is very convincing.

3 Experimental results

In this section, we will report experimental results
on GMM based speaker verification system using the
model distance normalization discussed above. Subsec-
tion 3.1 presents the datasets used in our experiments.
Subsection 3.2 gives a brief introduction of the evaluation
criteria. The result of these experiments are discussed in
Subsections 3.3 and 3.4.

3.1 Database description

For cepstral feature extraction, 13-dimensional PLP vec-
tors were calculated from the silence removed speech sig-
nal every 10ms using a 25 ms Hamming window. Band-
limiting was performed by only retaining the filterbank out-
puts from the frequency range 300Hz ∼ 3 400Hz. Cepstral
features were processed with RASTA filtering to eliminate
channel distortion. Delta, acceleration, and triple-delta co-
efficients were then computed over frames span and ap-
pended to each feature vector, which resulted in dimen-
sionality 52. Feature mapping and histogram equaliza-
tion (HEQ) were performed to improve channel and noise
robustness. Heteroscedastic linear discriminant analysis
(HLDA) was then used to decorrelate the features and re-
duce the dimensionality from 52 to 51 (1 dimension was
left out as nuisance). Speaker verification experiments were

conducted on the 2006 NIST SRE corpus[14]. We focused
on male part of the single-side 1 conversation train and
single-side 1 conversation task, which contains 1 570 true
trails and 20 561 false trails. A gender independent UBM
with 2 048 Gaussians was used in all the experiments, which
was trained using about 40 hours of data from the Switch-
board II corpora (phases 1 and 2). The speaker GMM
models were taken from UBM by MAP adaptation with
the relevance fact set to be 16 (only the means were used).

3.2 Detection cost function (DCF)

Results are presented using detection error tradeoff
(DET) plots. Along with the equal error rate (EER), the
minimum detection cost function (DCF) value, as defined

by NIST[14], was also used as an overall performance mea-
sure. The DCF defined for the NIST evaluation is of the
following expression:

CDet = CMiss × PMiss|Target + CFalseAlarm×
PFalseAlarm|NonTarget × (1− PTarget) (18)

The parameters of this cost function are the relative
costs of detection errors, CMiss = 10 and CFalseAlarm = 1,
and the a priori probability of the specified target speaker
PTarget = 0.01.

3.3 Correlation between DDD2
UUUBBB and LLRLLRLLR

In this subsection, the presupposition brought forward in
Section 2 will be validated from some experimental results.
Fig. 1 presents the distribution of the points (∆s, D2

UB), in
which ∆s = s̄tgt− s̄imp describes the score range for a par-
ticular speaker (s̄tgt and s̄imp are the mean values of the
target score and impostor score, respectively), and D2

UB is
the model distance between this speaker model and UBM.

From the picture above, we can find that an approxi-
mately linear correlation between ∆s and D2

UB indeed ex-
ists, although it is not very prominent. This shows the
presupposition in Section 2 is reasonable, and after D-
Norm, the correlation between LLR and model distance
is removed, just as Fig. 1 (b) shows.

(a) Before D-Norm (∆(s) has some correlation with D2
UB , which

means D2
UB can affect the range of LLR.)

(b) After D-Norm (The correlation is removed.)

Fig. 1 Distributions of points (∆(s), D2
UB)

3.4 Performance of D-Norm

In this part, we give the experimental results of D-Norm
and compare the performance of the simplified approach in
this paper with the conventional one. Fig. 2 shows the DET
curves of GMM baseline system and GMM with model dis-
tance normalization in 1conv4w-1conv4w task of the 2006
NIST SRE, and Table 1 gives the results of the systems
in terms of both minimum DCF and EER, in which “MC-
DNorm” denotes the conventional Monte-Carlo based D-
Norm approach while “UB-DNorm” denotes the upper-
bound based approach proposed in this paper.

Table 1 Results for GMM baseline and GMM with
two kinds of D-Norms

System EER (%) MinDCF (× 100)

GMM baseline 7.64 4.61

GMM with MC-DNorm 7.21 3.63

GMM with UB-DNorm 7.26 3.70

In Monte-Carlo based D-Norm approach, the KL dis-
tance was estimated through about twenty thousands syn-
thetic acoustic vectors, which were equivalent to approxi-
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mately 2∼ 3 minutes long utterances. The results showed
that since the relationship between the range of LLR and
model distance was not very prominent, as Fig. 1 indicated,
the D-Norm did not improve the system performance signif-
icantly, but it is still promising, especially when considering
its low cost. Moreover, the simplified approach proposed
in this paper achieved the performance similar to the tra-
ditional one, while reducing the complexity and computing
cost greatly. Additionally, it is worthwhile to try the com-
bination between D-Norm and T-Norm (just as ZT-Norm)
to further improve the system performance.

Fig. 2 DET curves for GMM baseline and GMM with
D-Norm in the 1conv4w-1conv4w task of the 2006 NIST SRE

4 Conclusion

This study investigated the conventional model D-Norm
approach for GMM-UBM based speaker verification sys-
tems. Based on some previous works, this paper illustrated
the principles of D-Norm in a new perspective which is more
logically reasonable. In addition, a simplified approach for
performing D-Norm, namely, the upper bound model dis-
tance estimation, was also presented. Compared with the
original Monte-Carlo based D-Norm, the simplified one in
this paper reduced the computational complexity in a great
deal, while can still achieve a similar performance, as was
shown in the experiments on 2006 NIST SRE corpus.
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