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Probabilistic Linear Discriminant Analysis
for Acoustic Modelling
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Abstract—In this letter, we propose a new acoustic modelling
approach for automatic speech recognition based on probabilistic
linear discriminant analysis (PLDA), which is used to model the
state density function for the standard hidden Markov models
(HMMs). Unlike the conventional Gaussian mixture models
(GMMs) where the correlations are weakly modelled by using
the diagonal covariance matrices, PLDA captures the correlations
of feature vector in subspaces without vastly expanding the
model. It also allows the usage of high dimensional feature input,
and therefore is more flexible to make use of different type of
acoustic features. We performed the preliminary experiments on
the Switchboard corpus, and demonstrated the feasibility of this
acoustic model.

Index Terms—probabilistic linear discriminant analysis, acous-
tic modelling, automatic speech recognition

I. INTRODUCTION

SPEECH recognition systems based on hidden Markov
models (HMMs) with Gaussian mixture model (GMM)

output distributions defined the state-of-the-art in acoustic
modelling for about 20 years [1]–[3]. GMM-based systems
have straightforward, easily parallelizable algorithms for train-
ing and adaptation, but have a limited ability to capture
the correlations in the acoustic space since diagonal covari-
ance matrices are normally used for computational reasons.
Although a variety of acoustic feature representations have
been investigated [4], [5] high-dimensional features lead to
a significant expansion in model size. One way to address
these limitations is the use of neural networks (NNs) which
can learn the correlations within feature vectors [6]. NNs typ-
ically use high-dimensional features covering several frames
of acoustic context [7]–[9], and deep neural networks (DNNs)
have achieved significant reductions in word error rate (WER)
across many datasets [10].

In this letter we propose a new acoustic model, based on
the GMM, which is able to capture acoustic correlations and
to use high-dimensional features. The approach is based on
probabilistic linear discriminant analysis (PLDA), originally
proposed for face recognition [11], and now heavily employed
for speaker recognition based on i-vectors [12]–[14]. PLDA –
which is closely related to joint factor analysis (JFA) [15] used
for speaker recognition – is a probabilistic extension of linear
discriminant analysis (LDA). In speaker or face recognition,
PLDA factorizes the variability of the observations for a
specific class (e.g. one speaker) using an identity variable –
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which is shared by all the observations of this class, and a
channel variable that depends on each observation – which is
used to explain the variability caused by the channel noise to
each observation. However, the main difference is that JFA
operates in the GMM mean supervector domain while the
PLDA used in this work is operated directly in the the acoustic
feature domain.

We extended PLDA to estimate the HMM state density
functions: the PLDA identity variables depend only on the
HMM states, while the acoustic observations depend on both
the identity variables and channel variables. Since both types
of latent variable can be estimated in a low-dimensional
subspace, it is feasible for PLDA to be deployed in a high-
dimensional feature space. In this letter we present the PLDA-
HMM model and a training algorithm, together with experi-
ments on Switchboard [16].

II. PROBABILISTIC LINEAR DISCRIMINANT ANALYSIS

PLDA is formulated by a generative model, where an
acoustic frame vector yt from the j-th HMM state at time
index t can be expressed as

yt|j = Uxjt + Gzj + b + εjt, εjt ∼ N (0,Λ), (1)

where zj is the state-dependent identity variable (referred as
state variable for brevity) shared by the whole set of acoustic
frames generated by the j-th state. xjt is the channel variable
which explains the per-frame variance. In this work, we do not
consider the correlations between the latent variables to sim-
plify model training. We assume that their prior distributions
are both N (0, I) for ease of Bayesian inference [11], while
more general forms of the PLDA prior distribution have been
investigated for speaker recognition [12]. U and G are two low
rank matrices which span the subspaces to capture the major
variations for xjt and zj respectively. They are analogous to
the within-class and between-class subspaces in the standard
LDA formulation, but are estimated probabilistically. b de-
notes the bias and εjt is the residual noise which is Gaussian
with a zero mean and diagonal covariance.

A. Mixture of PLDAs

As a single PLDA model can only approximate one Gaus-
sian distribution, we can use a mixture of PLDAs which can
be written:

yt|j,m = Umxjmt + Gmzjm + bm + εjmt, (2)

where 1 ≤ m ≤M is the component index. Let c denote the
component indicator variable, with prior distribution (weight)
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Fig. 1. Graphical model of mixture of PLDAs for the j-th HMM state. Tjm

is the number of frames generated from the state j and component m.

P (c = m) = πm. To avoid clutter we write P (c = m|yt) as
P (m|yt). This model, which is shown in Figure 1, is related
to the mixture of factor analysis model used for speaker and
speech recognition [17], [18].

B. Covariance modelling

The proposed PLDA model can learn feature correlations,
as can be seen from the marginal prior distribution of yt given
state j and component m under the independence assumption
between xjmt and zjm

P (yt|j,m) =
∫
P (yt|xjmt, zjm, j,m)

× P (xjmt)P (zjm)dxjmtdzjm

= N
(
yt; bm,UmUT

m + GmGT
m + Λm

)
(3)

Using low-rank matrices for Um and Gm allows this model
to be used in a high-dimensional acoustic feature space, in
contrast to other full covariance modelling approaches such
as semi-tied covariance matrices [19], diagonal priors [20]
or sparsity constrained [21]. Other approaches which use
a low-rank matrix approximation include EMLLT [22] and
SPAM [23]. The PLDA model is also closely related to the
subspace GMM (SGMM) [24], and the factor analysed HMM
(FAHMM) [25]. In fact, if we do not consider the softmax
function for the GMM weights, the SGMM acoustic model
may be represented as

yt|j,m = Gmzj + εjmt, εjmt ∼ N (0, Λ̃m) (4)

where the state-depended variables zj are tied across the
Gaussian components, although they can be optionally mixed
up to improve model capacity. SGMMs directly use globally
shared full covariance matrices without introducing another set
of projection matrices to capture the frame level correlations.
However, the SGMM is computationally expensive when in
the case of high-dimensional features. Similar to SGMMs,
the PLDA-based model can also share the state-independent
parameters across domains, such as for cross-lingual speech
recognition [26].

The FAHMM may be represented as

yt|j,m = Cjxjnt + εjmt, εjmt ∼ N (µµµjm, Λ̃jm) (5)
xjnt ∼ N (µµµjn,ΣΣΣjn) (6)

where Cj is analogous to Um, but is tied to each HMM state
rather than being globally shared. εjmt and xjnt are modelled
by two separate GMMs for each HMM state, which makes
the inference problem for FAHMM more complex compared
to a PLDA model.

III. MODEL TRAINING

Since the state-dependent and state-independent parameters
of a PLDA-based model are correlated, there is no closed
form solution to update them in a joint fashion. However, an
expectation-maximization (EM) algorithm can be employed.

A. Likelihoods
In order to accumulate the statistics to update the model

parameters, we first need to compute the likelihoods of the
model given the acoustic data, and the posterior distributions
of the latent variables zjm and xjmt given the current model
estimate. Depending on whether the latent variables are inte-
grated out or not, the likelihood can be estimated as follows.

1) Point estimate: This approach refers to using the maxi-
mum a posteriori (MAP) estimate of the latent variables xjmt

and zjm to compute the likelihood function

p(yt|x̄jmt, z̄jm, j,m)
= N (yt; Umx̄jmt + Gmz̄jm + bm,Λm) (7)

where x̄jmt and z̄jm denote the means of the posterior
distributions of xjmt and zjm respectively.

2) Uncertainty estimate: This approach refers to marginal-
ising out the channel variable xjmt using its prior distribution,
in order to compensate for the uncertainties in the estimation
of xjmt, resulting in the following likelihood function:

p(yt|z̄jm, j,m)

=
∫
p(yt|xjmt, z̄jm, j,m)P (xjmt)dxjmt (8)

= N
(
yt; Gmz̄jm + bm,UmUT

m + Λm

)
. (9)

This method is similar to the channel integration evaluation
method used for JFA based speaker recognition [27], [28].
Note that the likelihood can be efficiently computed without
inverting matrices UmUT

m +Λm [27], which makes it feasible
when yt is high dimensional. It is also possible to marginalise
out the state variable zjm alone or jointly with xjmt similar
as the methods used in [28].

B. Posteriors
Given the likelihoods, we then compute the posterior distri-

butions of the latent variables xjmt and zjm, using conjugate
priors. The posterior distribution of xjmt is given by

P (xjmt|yt, z̄jm, j,m)

=
p(yt|xjmt, z̄jm, j,m)P (xjmt)∫

p(yt|xjmt, z̄jm, j,m)P (xjmt)dxjmt
. (10)

With some algebraic rearrangement, we can obtain

P (xjmt|yt, z̄jm, j,m) = N (xjmt; V−1
m wjmt,V−1

m ) (11)

Vm = I + UT
mΛ−1

m Um (12)

wjmt = UT
mΛ−1

m (yt −Gmz̄jm − bm) (13)
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Similarly, we can derive the posterior distribution of zjm given
all the observations yt and the latent variables xjmt that zjm

depends on (cf. Figure 1):

P (zjm|yt, x̄jmt, j,m, t = 1, . . . , Tjm)

= N (zjm; F−1
jmdjm,F−1

jm) (14)

Fjm = I +
∑

t

γjmtGT
mΛ−1

m Gm (15)

djm = GT
mΛ−1

m

∑
t

γjmt(yt −Umx̄jmt − bm). (16)

Where γjmt denotes the per-frame posterior probability, given
as (using the uncertainty likelihood estimation (8))

γjmt = P (j,m|yt) = P (j|yt)
πmp(yt|z̄jm, j,m)∑
m πmp(yt|z̄jm, j,m)

(17)

where P (j|yt) is the HMM state posterior which can be
obtained using the forward-backward algorithm1.

C. Model Update

We may use the EM algorithm to update the model pa-
rameters of a PLDA-based acoustic model. For instance, the
auxiliary function to update Um is

Q(Um) =
∑
jt

∫
P (j,m|yt)P (xjmt|yt, z̄jm, j,m)

× log p(yt|xjmt, z̄jm, j,m)dxt

=
∑
jt

γjmtE

[
− 1

2
xT

jmtU
T
mΛ−1

m Umxjmt

+ xT
jmtU

T
mΛ−1

m (yt −Gmz̄jm − bm)

]
+ k

=
∑
jt

γjmtTr

(
Λ−1

m

(
− 1

2
UmE[xjmtxT

jmt]U
T
m

+ (yt −Gmz̄jm − bm)ET [xjmt]UT
m

))
+ k

where k is a constant value that is independent of Um, γjmt

denotes the component posterior probability P (j,m|yt), and
E[·] is the expectation operation over the posterior distribution
of xjmt. By setting ∂Q(Um)/∂Um = 0 we obtain

Um =

∑
jt

γjmt(yt −Gmz̄jm − bm)ET [xjmt]


×

∑
jt

γjmtE
[
xjmtxT

jmt

]−1

(18)

The updates for {Gm,bm,Λm} can be derived similarly.

1In this work we used Viterbi training, so the value of P (j|yt) is binary.

TABLE I
A TRAINING RECIPE FOR A PLDA-HMM ACOUSTIC MODEL

1. Train a diagonal GMM and initialize Gm,Um,bm

and Λm. Set zjm and xjmt to be Gaussian as N (0, I).
2. Update Um,bm and Λm using the model as equation (19)

for 4 ∼ 6 iterations.
3. Select the subset of components for each frame with the

highest likelihood using the model from step 2.
4. Update the posterior distribution of zjm and xjmt given the

current estimate of Gm,Um,bm, Λm.
5. Accumulate the statistics to update of Gm,Um,bm, Λm.
6. Optionally re-align the training data using the current model.
7. Go to step 4 until convergence.

D. Training Recipe

To obtain appropriate model resolution in the feature space
it is necessary to use a relatively large number of components
in the PLDA-based model, e.g. m = 400 in (2). However,
this can results in data sparsity when estimating the state-
dependent model parameters zjm. We may tie zjm across the
components, as in the SGMM (4); however, in this work we
simply set the distribution of zjm to be its prior if there is
not enough training data. This approach is preferred in order
to make it easier to scale the model to a very large training
dataset and to avoid sub-state splitting as used in SGMMs
[24].

To reduce the computational cost, we do not accumulate
statistics over all the PLDA components, but only over those
components (typically 10–20) which have higher posterior
probabilities for each acoustic frame [24]. This is a reasonable
approximation since most of the components have very small
posterior probabilities. We selected the subset of components
for each frame according to its likelihood to a mixture of factor
analysers [29] based global background model

yt|m = Umxmt + bm + εmt (19)

This is analogues to the universal background model used
in SGMMs for Gaussian selection, but is trained in the low
dimensional features space rather than using full covariance.

As stated before, the state and channel variables are in-
titialized as Gaussian distributions N (0, I). The remaining
PLDA parameters may be initialized randomly, however, this
can limit reproducibility. In this work, we used a diagonal
covariance GMM which has the same number of components
as the PLDA to initialize the parameters Gm,Um,bm, and
Λm. More precisely, bm and Λm are initialized by the cor-
responding mean and covariance of the GMM. We then take
the singular value decomposition of all the GMM means and
use the principal eigenvectors to initialize the matrices Um

and Gm. We have observed this to be a good starting point
to train the model in our experiments. The full training recipe
is summarised in Table I.

IV. EXPERIMENTS

We performed experiments on the Switchboard corpus [16],
where the training set contains about 300 hours of conversa-
tional telephone speech. The Hub-5 Eval 2000 data [30] is
used as the test set, which containss the Switchboard (SWB)
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TABLE II
WERS (%) USING 33 HOURS SWITCHBOARD TRAINING DATA AND MAXIMUM-LIKELIHOOD TRAINING CRITERION.

System Feature #Input frames Dim Likelihood CHM SWB Avg
GMM-HMM MFCC 0+∆+∆∆ 1 39 - 54.0 36.6 45.4
GMM-HMM MFCC 0+LDA STC 5 40 - 52.4 34.4 43.7
GMM-HMM MFCC 0+LDA STC 7 40 - 50.6 33.5 42.2
GMM-HMM MFCC 0+LDA STC 9 40 - 50.7 33.3 42.1
GMM-HMM MFCC 0+LDA STC 11 40 - 50.9 34.1 42.4
PLDA-HMM MFCC 0 5 65 Point 63.0 43.7 53.4
PLDA-HMM MFCC 0 7 91 Point 61.1 43.6 52.4
PLDA-HMM MFCC 0 9 117 Point 62.3 43.6 53.0
PLDA-HMM MFCC 0 5 65 Uncertainty 51.4 33.1 42.3
PLDA-HMM MFCC 0 7 91 Uncertainty 49.5 32.4 41.1
PLDA-HMM MFCC 0 9 117 Uncertainty 49.3 31.5 40.6
PLDA-HMM MFCC 0 11 143 Uncertainty 49.7 33.2 41.6
PLDA-HMM MFCC 0+∆+∆∆ 3 117 Uncertainty 49.9 32.4 41.3
PLDA-HMM MFCC 0+∆+∆∆ 5 195 Uncertainty 52.2 34.0 43.1
SGMM-HMM MFCC 0+∆+∆∆ 1 39 - 48.5 31.4 40.1

TABLE III
WERS (%) USING 300 HOURS OF TRAINING DATA.

System CHM SWB Avg
GMM+MFCC 0+LDA STC 42.6 25.6 34.2
PLDA+MFCC 0 41.4 25.2 33.5
SGMM+MFCC 0+∆+∆∆ 39.8 24.4 32.3

and Callhome (CHM) evaluation subsets. We implemented
the PLDA-based acoustic model within the Kaldi speech
recognition toolkit [31]. We used the pronunciation lexicon
that was supplied by the Mississippi State transcriptions [32]
which has more than 30,000 words, and a trigram language
model was used for decoding.

The GMM and SGMM baseline systems used 39-
dimensional mel frequency cepstral coefficients (MFCCs) with
first and second derivatives (MFCC 0 ∆ ∆∆). To take ad-
vantage of longer context information, for the GMM systems
we have also performed experiments of using spliced MFCC 0
of different context window size, followed by a global LDA
transformation to reduce the feature dimensionality to be 40,
and a global semi-tied covariance (STC) matrix transform
[19] to de-correlate the features. The PLDA systems directly
used the concatenated MFCCs with various size of context
window, without de-correlation and dimensionality reduction.
Although using features from longer context windows violates
the observation independence assumption of HMMs – a well
known limitation [33] – we achieved improved accuracy using
such features.

Table II shows the results of using a 33 hour subset of
the training data. In this case, there are about 2,400 clustered
triphone states in the GMM systems, corresponding to about
30,000 Gaussians. The PLDA and SGMM systems have
a similar number of clustered triphone states, and a 400-
component background model is used for each. The state
vector of SGMMs and latent variables of PLDA are all 40-
dimensional. We used 20,000 sub-states in the SGMM system,
and for PLDA systems, we have also compared the results
of using point or uncertainty estimation discussed in section
III-A. All of these systems were trained using the maximum
likelihood criterion without speaker adaptation.

After estimating the optimal system configurations for dif-

ferent acoustic models, we then performed experiments using
the full training set of 300 hours (Table III). We used concate-
nated static MFCC 0 of 7 input frames, followed by LDA and
STC transformation for the GMM system. There were around
8,000 clustered triphone states, with about 200,000 Gaussians.
The SGMM system had 120,000 sub-states, and the PLDA
system used 9 input frames of static MFCC 0. Again, they
have a similar number of clustered triphone states as the GMM
system.

V. DISCUSSION AND CONCLUSION

Our experimental results highlight the flexibility of the
PLDA acoustic model which can use a variable number of
potentially highly correlated input frames without requiring
full covariance modelling. Compared to the GMM system
using LDA and an STC transform, the PLDA system resulted
in a lower WER given the same input features. In terms of
likelihood computation, using uncertainty estimation leads to
significantly lower WER compared to using point estimation.
The PLDA systems obtained higher WER compared with the
SGMM systems, however, using both the small and large
training sets. As mentioned in Section II-B, we do not tie the
state-dependent variables zjm across all the components as in
the SGMM, in order to scale the model easily to large training
sets. However, this comes at the cost that we can not balance
the size of model according to the amount of training data,
in contrast to the sub-state splitting used in SGMMs. We may
achieve higher recognition accuracy by using a similar method
to tie the state dependent variables, an issue for future work.

In this letter, we have proposed a new acoustic modelling
approach based on probabilistic linear discriminant analysis
(PLDA). This model is able to use multiple input feature
frames by using subspace covariance modelling. We have
presented the algorithm and the training recipe to build a
PLDA-based acoustic model, and have also shown some
preliminary results on the Switchboard corpus which illustrates
the potential of this model. In the future, we shall investigate
other training approaches such as speaker adaptive training
and discriminative training, as well as using different feature
representations, for instance, the bottleneck features that are
obtained from neural networks.
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