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Abstract 
In anchor modeling, each speaker utterance is represented as 
a fixed-length location vector in the space of reference 
speakers by scoring against a set of anchor models. SVM-
based speaker verification systems using the anchor location 
representation have been studied in previously reported work 
with promising results. In this paper, linear combination 
weights in reference speaker weighting (RSW) adaptation are 
explored as an alternative kind of speaker location 
representation. And this kind of RSW location representation 
is compared with the anchor location representation in various 
speaker verification tasks on the 2006 NIST Speaker 
Recognition Evaluation corpus. Experimental results indicate 
that with long utterances for reliable maximum likelihood 
estimation in RSW, the RSW location representation leads to 
better speaker verification performance than the anchor 
location; while the latter is more effective for verification of 
short utterances in high-dimensional representation space. 
 
Index Terms: speaker verification, speaker location, anchor 
modeling, reference speaker weighting, support vector 
machines 

1. Introduction 
The idea of using a set of reference speakers for speech 
modeling has been extensively studied for many tasks in 
speech processing, e.g., rapid speaker adaptation [1], [2], 
speaker recognition [3]–[5] and tracking [6]. In [3], anchor 
models were introduced for speaker verification and indexing, 
in which speaker utterance data is scored against a set of 
reference speaker models to determine its corresponding 
location vector in the space of reference speakers. In [4], [5], 
it is shown that speaker verification systems using such kind 
of anchor location representation can achieve state-of-the-art 
verification performance. 

Reference speaker weighting (RSW) was developed for 
rapid speaker adaptation in speech recognition [1]. It builds 
models for new speakers as a linear combination of reference 
speaker models in a maximum likelihood sense. It has been 
shown that the RSW adapted model may improve speech 
recognition performance of the speaker-independent model 
with a small amount of adaptation data. In [7], [8], RSW was 
also employed for enrolling speakers with limited enrollment 
data in speaker verification tasks. In this paper, instead of 
using RSW adapted target speaker models to calculate 
likelihood scores of each frame in utterance data , the set of 
linear combination coefficients used in RSW modeling is 
stacked into a vector, which is then used as a kind of speaker 
location representation in the space of reference speakers. 

Since it appeared in the early nineties as optimal margin 
classifiers in the context of Vapnik’s statistical learning 
theory [9], support vector machines (SVMs) have recently 
become one of the most important and widely used 
classification techniques in the field of speaker recognition 
[10]–[13]. In this paper, support vector machines (SVMs) are 
applied to discriminate these speaker location vectors in 
reference speaker space for speaker verification purpose. 

These two kinds of speaker location representation, i.e., 
the anchor and RSW location respectively, are compared in 
various verification tasks on the 2006 NIST SRE corpus [14]. 
In one task, the duration of enrollment and test utterances is 
limited to about 10 seconds; while in the other task, longer 
enrollment and test utterances are used (about 2 minutes). 
Experimental results indicate that for short utterances the 
anchor location representation obtains better verification 
performance than the RSW location representation; on the 
other hand, the latter is more effective for longer utterances. 

The rest of the paper is organized as follows. In Section 2, 
we discuss the derivation of location vector representation for 
speaker utterance data based on anchor modeling and 
reference speaker weighting respectively. In Section 3, 
speaker verification with SVMs is presented. Section 4 
evaluates these two kinds of speaker location representation 
through a series of SVM-based speaker verification 
experiments on the 2006 NIST Speaker Recognition 
Evaluation (SRE) corpus. And, Section 5 concludes the paper 
with a summary and future work. 

2. Speaker representation by location in 
the space of reference speakers 

In this section, we describe how an utterance and its 
underlying speaker can be represented as a location vector by 
its relationship to a predetermined set of reference speakers. 
Anchor location is derived by scoring the utterance data 
against a set of reference speaker models, whereas RSW 
location vector is composed by stacking the linear 
combination coefficients which are used to construct a model 
for the utterance from reference speaker models in the RSW 
adaptation process. 

2.1. Location representation with anchor modeling 

In this approach, speaker location in the space of reference 
speakers is represented by the following vector, , [3]–[6] v
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set of well trained reference speaker models (called anchor 
models), which are modeled as Gaussian Mixture Models 
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(GMMs) and MAP adapted from a Universal Background 
Model (UBM) [15] in this study; ( ip )λx  is the normalized 
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2.2. Location representation with reference speaker 
weighting (RSW) 

In this case, the reference space, called RSW space in the 
following discussion, is spanned by supervectors of reference 
speaker models. In this study, these reference speaker models 
are MAP adapted GMMs from the UBM as in the anchor case 
mentioned above; so that all reference speaker models have 
the same structure (e.g. the number of mixture components) 
as the UBM. For each reference speaker, a GMM supervector, 

iΛ , is formed by concatenating all of the mean vector 

parameters in corresponding GMM model, iλ , i.e. 
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where i
kµ  is the mean vector of k-th Gaussian component in 

the i-th reference model, iλ . 

For a new utterance, x , a model, λx , is constructed for it 
through reference speaker weighting (RSW) [1]. In this way, 
the GMM supervector of λx , denoted by  Λx , is represented 
as a linear combination of the GMM supervectors of 
reference speaker models, { }; 1,2, ,i i EΛ = , as 
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Λ = ⋅Λ∑x v  (4) 

Then, speaker location in the RSW space is represented 
by this set of linear combination coefficients, 

( ){ }; 1,2, ,i i E=v : 

  (5) ( ) ( ) ( )1 ,  2 ,  ,  .
T

E= ⎡ ⎤⎣v v v v ⎦
In this paper, the location vector in the RSW space is 

found in a maximum likelihood sense through  
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v

v x v  (6) 

where { }1, , Tx x x  represents the utterance data (of T  

acoustic feature vectors); {  is the 

likelihood of utterance data given the location vector and the 
set of reference speaker models, which is calculated as 
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where , kw x
kµ  and  are respectively the weight, mean 

vector, and covariance matrix of the k-th component in the 
utterance GMM model, 

kC

xλ . In this study, the weights and 
covariance matrices of mixture components are shared among 

all of the reference speaker models, utterance models and 
UBM. For the mean vector, x

kµ , according to (4), we get: 
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The maximization in (6) is done through the Expectation-
Maximization (EM) algorithm [16], i.e., iteratively 
optimizing an auxiliary function  with respect to , ( ,Q ′v v ) v
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where ′v  is the current estimate of location vector and 

{ }( ), , ; 1,2, ,t iP k i E′ Λ =x v  is the posteriori probability of 

the k-th Gaussian component given the utterance data  and 
the current location estimate 

tx
′v , 
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Let ( ) 0, 1,2, ,Q i i∂ ∂ = =v E , we obtain the update 

equation for each ( )iv , 1,2, ,i E= : 
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3. SVM-based speaker verification by 
location in the space of reference speakers 

For SVM-based speaker verification by location in the space 
of reference speakers, the location vector  is treated as 
input feature and modeled using support vector machines. In 
the standard formulation, an SVM, , is given by 

v

( )f v

 ( ) ( )
1

,
M

i i
i

,f kα
=

b= +∑v v v  (12) 

where ( )1 2,k v v  is a kernel function. In this study, linear 
kernel is used, i.e. 
  (13) ( ) ( )1 2 1 2, Tk =v v v v .

The parameters,  and b { }, ; 1, ,i i iα =v M , are obtained 
through a training process that maximizes the margin between 
two classes (positive vs. negative). In this study, SVMTorch 
is used as SVM trainer [17]. For classification, a decision is 
made upon whether the value, , is above or below a 
threshold.  

( )f v

In the application of SVMs for speaker verification, an 
SVM is trained for each target speaker using the location 
vectors of the speaker’s enrollment utterances as positive 
examples, and the location vectors of all utterances from 
background speakers in some development data as negative 
examples. 
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Figure 1: DET curves for SVM-based speaker verification 
using the anchor and RSW location respectively in the 2006 
NIST SRE 1conv4w-1conv4w task. 583 reference speaker 
models are used in the representation space. 

4. Experimental results 
In this section, we report speaker verification experiments by 
location in the space of reference speakers. Section 4.1 
presents some general experimental setup information about 
task, corpora and acoustic features used. The results of these 
experiments are discussed in Section 4.2. 

4.1. Experimental setup 

For cepstral feature extraction, a 13-dimensional PLP is 
calculated every 10 ms using a 25ms Hamming window. 
First, second and third order derivatives over a  frame 
span are computed and appended to each feature vector, 
which results in dimensionality 52. Heteroscedastic linear 
discriminant analysis (HLDA) is then used to decorrelate the 
features and to reduce the dimensionality from 52 to 51 (1 
dimension is left out as nuisance). RASTA, feature mapping 
and histogram equalization (HEQ) are applied to improve 
channel and noise robustness of cepstral features. A gender 
independent UBM with 2048 Gaussians is trained using about 
40 hours of data from the Switchboard corpora (I, II and 
Cellular parts). And, in the speech data for UBM training, 
there are 583 speakers (248 male and 335 female speakers). 
Their models are MAP adapted from the UBM and used as 
reference speaker models in anchor modeling and RSW. The 
relevance factor in MAP adaptation is set to be 16 (only the 
means are adapted). 

2±

Speaker verification experiments were conducted on the 
2006 NIST SRE corpus [14]. The anchor and RSW location 
representation are compared in two tasks. The first task uses 
one conversation side for training and testing (denoted as 
1conv4w-1conv4w [14], the duration of pure speech after 
voice activity detection is about 2 minutes). This task 
involves 608 speakers, 3,612 true trials and 47,836 false 
trials. The other task uses conversation excerpts of about 10 
seconds for training and testing (denoted as 10sec4w-
10sec4w [14]), which involves 2,942 true trials and 29,608 
false trials. Location vectors of utterances in the 2004 NIST 

SRE dataset are calculated as negative examples in SVM 
training. 

Figure 2: DET curves for SVM-based speaker verification 
using the anchor and RSW location respectively in the 2006 
NIST SRE 10sec4w-10sec4w task. 583 reference speaker 
models are used in the representation space. 
 

Results are presented using Detection Error Tradeoff 
(DET) plots. Along with Equal Error Rate (EER), the 
minimum detection cost function (DCF) value, as defined by 
NIST [14], is also used as an overall performance measure. 

4.2. Results 

Figure 1 shows the DET curves for SVM-based speaker 
verification using the anchor and RSW location 
representation respectively in the 2006 NIST SRE 1conv4w-
1conv4w task. All 583 reference models are used to construct 
the representation space for location vectors. Similarly, 
Figure 2 compares the DET curves for these two kinds of 
location representation in the 2006 NIST SRE 10sec4w-
10sec4w task. 

We can see that with long enrollment and test utterances 
in the 1conv4w-1conv4w task, the RSW location 
representation leads to better verification performance than 
the anchor location representation. While for short utterances 
in the 10sec4w-10sec4w task, verification using the anchor 
location representation is more effective. 

This may be related with the fact that the RSW location 
vectors are derived as parameters of a model adaptation 
process in a maximum likelihood sense. With enough data to 
guarantee reliable maximum likelihood estimation in equation 
(11), the model-based representation of utterance data in 
RSW is capable of reducing some noisy effects in original 
utterances and derives more effective location representation 
in the space of reference speakers. However, for short 
utterances, it may not be able to carry out the maximum 
likelihood estimation in RSW reliably with respect to a large 
number of reference speaker models, which would affect the 
precision of derived RSW location representation and degrade 
following speaker verification performance. For the above 
mentioned experiments in the 10sec4w-10sec4w task, there 
are about 1,000 frames of acoustic features in an utterance of 
about 10 seconds; yet, there are 583 parameters needed to be 
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estimated in RSW to derive a location vector in the 
representation space having 583 reference speaker models. 

Hence, in the following experiments, we vary the number 
of reference speaker models in the representation space to 
investigate whether this would help the parameter estimation 
process in RSW and to study how this would affect 
verification performance. Table 1 summarizes the EER and 
the minimum NIST DCF values. Subsets of reference 
speakers are selected from all of the 583 speakers using the 
method proposed in [4], which selects a subset of reference 
voices that covers the main variability of initial set of 
reference speakers. 

Table 1 shows that for the anchor location representation, 
verification performance improves as more reference speaker 
models are used. This is due to the fact that each component 
in the anchor location vectors is estimated independently with 
other components by scoring utterance data against 
corresponding reference speaker model. Adding more 
reference speaker models would not affect the estimation 
precision of each component; and more reference speaker 
models would to some extent inject more information into the 
location vectors, which could help SVMs to discriminate 
speakers in the space of reference speakers. 

For the RSW location representation, from Table 1 we 
can see that best verification performance is achieved with 
200 reference speaker models. Although more reference 
speaker models would result in more informative 
representation space, it would also cause parameter estimation 
problem in the maximum likelihood formulation of RSW. 
Hence compared with using all 583 reference speaker models, 
using less reference speakers could guarantee more robust 
parameter estimation in RSW, which in turn improves 
verification performance. 

5. Conclusions 
In this study, two different types of speaker location 
representation based on anchor modeling and reference 
speaker weighting (RSW) respectively are compared for 
SVM-based text-independent speaker verification. 
Experimental results show that with long utterances to 
guarantee enough data for reliable maximum likelihood 
parameter estimation in RSW, the RSW location vector could 
lead to more effective speaker location representation and 
obtain better verification performance than the anchor 
location representation. However, for short utterances (e.g. 
about 10 seconds), verification system using the anchor 
location representation outperforms that using the RSW 

location. This is related with the fact that the deficiency of 
data would cause unreliable maximum likelihood estimation 
of the RSW location vectors in a high-dimensional reference 
speaker space and degrade following speaker verification 
performance. This justifies a need to balance the complexity 
of location representation against the amount of available 
utterance data, which will be studied further in future work. 

Table 1. SVM-based speaker verification results for the anchor 
and RSW location representation in the 2006 NIST SRE 
10sec4w-10sec4w task. They are compared when varying the 
number of reference speaker models in the representation 
space. 

 Anchor Location   RSW Location Dim. of Ref. 
Space EER (%) DCF 

(x100) EER (%) DCF 
(x100) 

100 28.11 9.47 28.76 9.48 
200 26.68 9.17 27.57 9.24 
300 25.46 9.05 27.97 9.29 
400 24.92 8.97 28.45 9.31 
500 24.75 8.92 30.59 9.60 
583 24.75 8.88 32.09 9.75 
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