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Abstract
Nuisance attribute projection (NAP) and within-class 
covariance normalization (WCCN) are two effective 
techniques for intersession variability compensation in SVM 
based speaker verification systems. However, by normalizing 
or removing the nuisance subspace containing the session 
variability can not guarantee to enlarge the distance between 
speakers. In this paper, we investigated the probability of 
using linear discriminant analysis (LDA) for discriminative 
training. To cope with the small sample size problem which 
prevents us from using LDA directly, we adapted the 
subspace LDA approach, which first projects the whole 
feature space into a relatively low dimensional subspace by 
PCA, and then performs LDA in the subspace. By some 
modification, the subspace LDA can be degenerated into a 
kind of WCCN approach, which we called subspace WCCN. 
Experiments on NIST SRE tasks showed that, the subspace 
WCCN outperformed the conventional direct WCCN, 
especially in low dimensional feature space. 
Index Terms: Linear Discrimiant Analysis, Within-class 
Covariance Normalization, NAP, Support Vector Machine 

1. Introduction
In recent years, the classifier of support vector machines 
(SVMs) has been successfully used in the task of speaker 
verification, and achieved state-of-the-art performance which 
can be comparable with conventional GMM-UBM systems, 
while the combination of the two are hopefully to further 
enhance the system performance [1]-[4]. To cope with the 
session variability, two techniques, namely, nuisance 
attribute projection (NAP) [5] and within-class covariance 
normalization (WCCN) [6, 7]  are proposed for SVM-based 
systems and have achieve relatively promising result. 
Actually, NAP as well as its general version for nonlinear 
kernels [8] can be seen as to remove the nuisance subspace 
which mainly contains the session variability, while WCCN 
is mean to normalize the variability in the nuisance space in 
order to restrict the distance intra speakers.  

Despite the success of NAP and WCCN, however, both 
of them still have their limitations. By removing or 
normalizing the nuisance subspace, the intra speaker distance 
is expected to be reduced, whereas the inter speaker distance, 
which is essential point for separation, is not expected to be 
enlarged accordingly. Actually, just as it is pointed in [9], the 
nuisance subspace selected by eigen-decomposition of the 
within-class covariance matrix also contains considerable 
amount of discriminative information of speakers, especially 
when the development set is relatively small when compared 
with the dimensionality of feature space. Both NAP and 
WCCN do not make well usage of this kind of information, 

and in addition, if the nuisance subspace is not properly 
selected, the performance of NAP will degrade apparently.   

In this paper, we investigate the problem and try to 
enlarge the between class distance while restrict the within-
class variability in feature space. For this target, linear 
discriminant analysis (LDA) is an appropriate approach, 
which is to select the directions to maximize the ratio of 
between-class scatter to that of within-class scatter. However, 
the insufficient training data can only offer a singular within-
class scatter matrix which is impossible to solve the objective 
function of LDA. In addition, the low ranked between-class 
scatter matrix also makes LDA unable to find enough 
directions to describe the whole feature space. Hence, this 
difficulty, known as small sample size problem, makes it 
impossible to use LDA directly. For this, we borrowed the 
idea of subspace LDA [10] in face recognition filed which 
performs LDA in the subspace selected by PCA. By some 
modification, the subspace LDA approach can be 
degenerated into another equivalent form, which we named 
the subspace WCCN, and experiments shows that it 
outperforms the conventional direct WCCN approach, 
especially in low dimensional feature space.  

The rest of paper is organized as follows. Section 2 
presents a brief review of NAP and WCCN and section 3 
describes the subspace LDA method and its equivalent form 
subspace WCCN in detail. Experimental results and 
discussion are given in section 4 and section 5 summarizes 
the paper as a conclusion.

2. SVM kernels of NAP and WCCN 
NAP aims to remove the nuisance subspace that causes 
session variability in the kernel, and constructs a new one as 
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where mU  is a matrix whose columns are composed of 
eigenvectors corresponding to the top m eigenvalues of the 
within-class covariance matrix, WS ,
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where N is the total number samples and c is the number of 

class. Different with NAP, for WCCN, the expected within 

class covariance matrix is used in the generalized linear 

kernel to suppress the session variability, i.e. 
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2.1. Overcome the limitations 
Although NAP and WCCN are effective for session 
variability compensation, however, they are not mean to 
enlarge the between-class distance. In addition, the authors in 
[9] pointed out that, the nuisance space removed by NAP 
actually has considerable amount of speaker variability 
which is useful for discrimination.  To avoid these problems, 
they proposed a method named discriminant NAP to increase 
its discriminative ability by using an inverse version of LDA 
criteria, which aims to find the nuisance space with high 
intra-speaker variability while low inter-speaker variability 
and then remove it. Different with their idea, in this paper, 
we try to use the subspace version of LDA criteria to find the 
most discriminative directions. More detailed description 
about this approach is presented in the follow-up section.

3. LDA and WCCN in Subspace
LDA attempts to find the optimal projection 

optW as the 

matrix with orthonormal columns which maximizes the ratio 
of the determinant of the between-class scatter matrix of the 
projected samples to the determinant of the within-class 
scatter matrix of the projected samples, i.e.: 
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where BS and WS denote the between-class scatter matrix and 
within-class scatter matrix, respectively, and WS is defined as 

equation (2) while BS  is as follows: 
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If wS is a non-singular matrix, then the optimal projection 

optW in (4) can be obtained by solving the eigenvalue 

problem of the following equation: 

miwwSS iiiBW ,,2,1,1 ���� �                           (6) 

Unfortunately, in practice, WS  is always singular since 
the number of training samples is far smaller than the 
dimensionality of the feature space. This difficulty, known as 
the small sample size problem, prevents us form using LDA 
directly for supervised discriminative training. To overcome 
it, different methods have been proposed and applied 
successfully to image retrieval, object and face recognition 
tasks. Here, we introduce a widely used method in face 
recognition filed, named subspace LDA or fisherfaces [10], 
which first projects the whole feature space into a low 
dimensional subspace by PCA, in which WS  is full rank and 
do LDA in the relatively small subspace. More formally, the 
optimal matrix optW in (4) would be: 
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However, it is very interesting to find out that, the 
subspace LDA method can degenerate into subspace WCCN, 
when performed a little modification. As it is known that  
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And if the PCA basis are normalized by its corresponding 
eigenvalues, namely,  

2/1��

�

pcapca

T
pcapcaT

WW

WWS

Using the normalized PCA basis, then subspace LDA would 
be as follows: 
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And the solution of equation (9) is to solve the eigenvalue 
problem of: 

� � �
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Thus, in this case, the eigenvectors of
pcaW

T
pca WSW  is the 

most discriminative directions in normalized PCA subspace. 
And by normalizing those directions using their 
corresponding eigenvalues to suppress the variance, we will 
get the subspace WCCN, i.e.: 
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Hence, the subspace WCCN approach is equivalent with 
LDA criteria in the subspace, and compared with the 
conventional direct WCCN as equation (3) showed, it is more 
capable to explore the discriminative information in the 
training examples. 

3.1. Some practical rules and discussion 
To achieve satisfying results, the following rules and 
principles should be noticed when performing subspace 
WCCN.
1) When PCA is used for dimension reduction, the kernel 
trick can be used which allows doing PCA in the relatively 
small sample space, and then transforms to the original 
feature space.  
2) Only used the PCA subspace will lose large amount of 
information in its orthogonal complement space. To avoid 
this problem, just as [7], the PCA-complement is also 
reserved. Thus the final feature space is actually as:  
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where
wccnpcaWWA � and � � � � .xWWIx T

pcapcaacp ��� � is set 

to be 0.5 in our experiments. 
3) It should be noted that, because BWT SSS �� , and 

compared with WS , BS is much sparser (because there are 
only hundreds of speakers in the development set but the 
sessions can be thousands). Hence it is very likely that the 
total scatter matrix TS will be dominant by WS and the 

eigenvectors of TS will be nearly the same as that of WS . In 
that case, the PCA subspace will mainly contain the within-
class variability and the direct WCCN approach will have the 
similar performance with subspace WCCN, especially when 
the dimensionality of the original feature space is huge. This 
fact will be illustrated in the following up experiments. 
4) Another interesting fact lies in that, the subspace WCCN 
approach is very similar with the method described in [7], 
which performs WCCN in no-normalized PCA subspace. 
Actually, there is no much difference between the two 
when WS is dominant in TS . However, if the factor of BS can
not be ignored, then the basis selected by the two are 
different. Limited by the length, however, we do not present 
the detailed comparison of the two approaches in this paper. 

4. Experiments and Discussion 
In this section, we report some experimental results of SVM-
based speaker verification systems using NAP and WCCN 
for session variability compensation. The purpose of these 
experiments is to compare the performance of direct and 
subspace WCCN in low and high dimensional feature space, 
respectively. For this purpose, two systems are used in our 
experiments, one of which is MLLR based SVM system and 
the other is the widely used GMM supervector kernel based 
SVM system. All experiments were conducted on the 2006 
NIST SRE corpus, and we focused on male part of the 
1conv4w-1conv4w task, which contains 1570 true trails and 
20561 false trails. 

Before reporting the results of experiments, it is 
necessary to specify the direct WCCN approach in this paper. 
In practice, the within-class covariance matrix WS is always 
not full rank or ill-conditioning. Hence, it's not appropriate to 
use equation (3) directly.  In this paper, we modified the 
direct WCCN approach into two modes as follows: 

Mode 1: Only use the subspace of WS with high 
eigenvalues, i.e. the feature space would be 

� � xUx T
n��                                       (13) 

Mode 2:  Concatenate two subspaces, just as equation 
(12) did, the feature space would be 
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where in equation (13) and (14), T
W UUS � and

2/1�� nnn UU . nU is composed by the columns of U
corresponding to the top n eigenvalues. �  in equation (14) is 
set to be 0.5 in our experiments.

In this paper, we found in low dimensional feature space, 
where there are relatively sufficient training samples to 
estimate WS , the direct WCCN with mode 1 will get slightly 
better performance while in large dimensional feature space, 
mode 2 is more appropriate. The detailed description of the 
experiments is in the follow-up sections.

4.1. Experiment on MLLR Kernels 
In maximum likelihood linear regression (MLLR) [11], an 
affine transform (A, b) is applied to the Gaussian mean 
vectors to map from speaker-independent to speaker-
dependent means by bAs �� �� , where A is a full matrix 
and b is a vector. Using MLLR kernels for SVM-based 
speaker verification was first proposed in [12], which stacked 
the MLLR transformation coefficients together as features for 
SVM, and achieved very promising performance.  

To achieve satisfying results, the set of phone models are 
always partitioned or clustered by similarity, and a separate 
transform is applied to each cluster. In our system, however, 
only one MLLR transform matrix was used to all the clusters, 
because our purpose of using MLLR based SVM is to 
examine the performance of subspace WCCN in the 
condition of low dimensional feature space. Thus, it may 
result in suboptimal baseline system performance. 

As for the features, 18 MFCC coefficients plus C0 are 
computed, and then cepstral mean subtraction (CMS) and 
RASTA filtering are followed to alleviate the channel effects. 
The First order derivatives computed over 5 frames are 
appended to each frame vector, which results in 
dimensionality 38. Thus, the feature dimensionality of 
MLLR based SVM is 14823938 �� . The NIST SRE 2004 
corpus was used as the development set for session 
variability compensation, in which we used 1790 sessions of 
310 speakers. Hence, compared with the dimension of feature 
space extended by SVM kernel, the small sample size 
problem was not very serious.  

4.1.1. Results of MLLR Kernels 

In this experiment, The direct WCCN approach is performed 
as mode 1 described, where the rank of nU  is 800. For 

subspace WCCN, the rank of 
pcaW is 300 and the number of 

Figure 1: Comparison of subspace WCCN, direct 
WCCN and NAP on MLLR based SVM system. 
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NAP eigenvectors is 10. Figure 1 shows the results of 
subspace WCCN in MLLR based SVM system in the form of 
DET curves. It is obvious that, from figure 1, the subspace 
WCCN approach outperforms both direct WCCN and NAP 
significantly, about more than 15% relative improvement in 
both EER and min DCF.  Hence, when the background data 
is relatively sufficient for the feature space, subspace WCCN 
can achieve really satisfying results, because it is a kind of 
discriminative training. Unfortunately, most kernels used in 
SVM-based speaker verification which can achieve state-of-
the-art performance are huge in dimensionality of feature 
space and suffer from the small sample size problem. The 
following set of experiments is performed to examine the 
performance of subspace WCCN on one of such kernels, 
namely, GMM supervector kernels. 

4.2. Experiment on GMM Supervector Kernels 
GMM mean supervector kernels have been wildly used since 
it was proposed in [1]. A GMM mean supervector is formed 
by concatenated the component mean vectors of a MAP-
adapted GMM that is � � � � � �	 
TT

c
T sss ��� �1� , where 

� �si� is the thi component mean.
For the features in the experiment, 12 MFCC coefficients 

plus C0 are computed and cepstral mean subtraction (CMS) 
and feature warping over 300 frames are applied. RASTA 
filtering of the features follows. First, second and third order 
derivatives computed over 5 frames are appended to each 
feature vector, which results in dimensionality 52. HLDA is 
used to reduce the feature dimension from 52 to 51. The 
number of Gaussian mixture components is 512 and the final 
dimension of supervector is 26112.

The NIST SRE 2004 corpus was used as the development 
set for session variability compensation, in which we used 
4603 sessions of 310 speakers. In this experiment, the direct 
WCCN was performed as mode 2 described, and the rank of 

nU is 400. For the subspace WCCN, the rank of 
pcaW is also 

400. The number of NAP eigenvectors is 60.

4.2.1. Results of GMM Supervector Kernels 

Table 1 shows the results of NAP, direct and subspace 
WCCN on GMM supervector kernels in terms of EER and 
min DCF. Compared with the MLLR based system, it is 
obvious that subspace WCCN did not achieve so notable 
improvement, although it still slightly outperforms direct 
WCCN. The reason is just as it is discussed subsection 3.1, in 
more than 20 thousands dimensional feature space, the 
between class covariance matrix BS estimated by several 
hundred speakers is really spare and noisy. Hence, we can 
take for WT SS � , and the directions found by PCA in TS are
very similar with that of WS . Thus, that will make little 
difference between direct and subspace WCCN approach.  

However, we can expect the subspace WCCN approach 
will achieve better performance when added more speakers 
and sessions in background training examples. But such 
training data is always difficult or expensive to collect, and 
even pooled in several hundreds more speakers, the training 
samples is still insufficient when compared to the feature 
space. Hence, the classical LDA criteria may not be 
appropriate for SVM classification in large feature space. 
Similar discussion is also presented in [9].  To prepare more 
discriminative features in SVM modeling, more works on 
this direction is still needed. 

5. Conclusion
In this paper, we investigated the subspace WCCN approach 
for discriminative training in SVM-based speaker verification 
systems. In this approach, WCCN is performed in the 
normalized PCA subspace and we demonstrated that it will be 
equivalent with the LDA criteria. Experiment on NIST sre06 
corpus showed that, subspace WCCN can achieve significant 
performance gains over direct WCCN or NAP when the 
training samples are relatively sufficient for the feature space. 
However, in the large feature space where the training data is 
insufficient, the performance gains are limited, because the 
PCA subspace will mainly only contain the within-class 
variability. Our future work will attempt some modified LDA 
criteria for more efficient and robust discriminative training 
approaches, and examine the performance of subspace 
WCCN on some other tasks, e.g. short duration and cross 
channel tasks.
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Table 1. Results of GMM supervector kernels experiment 

� Baseline
system NAP Direct

WCCN 
Subspace
WCCN

EER .0630 .0554 .0510 .0503

Min DCF .0300 .0263 .0250 .0245

1376


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index
	------------------------------
	Abstract Book
	Abstract Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Also by Liang Lu
	Also by Yuan Dong
	Also by Xianyu Zhao
	Also by Jian Zhao
	Also by Haila Wang
	------------------------------

