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Abstract
Achieving artificial visual reasoning — the ability to answer
image-related questions which require a multi-step, high-level
process — is an important step towards artificial general intel-
ligence. This multi-modal task requires learning a question-
dependent, structured reasoning process over images from lan-
guage. Standard deep learning approaches tend to exploit bi-
ases in the data rather than learn this underlying structure, while
leading methods learn to visually reason successfully but are
hand-crafted for reasoning. We show that a general-purpose,
Conditional Batch Normalization approach achieves state-of-
the-art results on the CLEVR Visual Reasoning benchmark with
a 2.4% error rate. We outperform the next best end-to-end
method (4.5%) and even methods that use extra supervision
(3.1%). We probe our model to shed light on how it reasons,
showing it has learned a question-dependent, multi-step pro-
cess. Previous work has operated under the assumption that vi-
sual reasoning calls for a specialized architecture, but we show
that a general architecture with proper conditioning can learn to
visually reason effectively.
Index Terms: visual reasoning, visual question answering,
multi-modal data, deep learning

1. Introduction
The ability to use language to reason about every-day visual
input is a fundamental building block to human intelligence.
Achieving this capacity to visually reason is thus a meaningful
step towards artificial agents that truly understand the world.
Advances in both image-based learning and language-based
learning using deep neural networks have made huge strides
in difficult tasks such as object recognition [1, 2] and machine
translation [3, 4]. These advances have in turn fueled research
on the intersection of visual and linguistic learning [5, 6, 7, 8, 9].

To this end, [9] recently proposed the CLEVR dataset to
test multi-step reasoning from language about images, as tradi-
tional visual question-answering datasets such as [5, 7] ask sim-
pler questions on images that can often be answered in a single
glance. Examples from CLEVR are shown in Figure 1. Struc-
tured, multi-step reasoning is quite difficult for standard deep
learning approaches [10, 11], including those successful on
traditional visual question answering datasets. Previous work
highlights that standard deep learning approaches tend to ex-
ploit biases in the data rather than reason [9, 12]. To overcome
this, recent efforts have built new learning architectures that ex-
plicitly model reasoning or relational associations [10, 13, 11],
some of which even outperform humans [10, 11].

(a) What number of cylin-
ders are small purple
things or yellow rubber
things?
Predicted: 2

(b) What color is the other
object that is the same
shape as the large brown
matte thing?
Predicted: Brown

Figure 1: Examples from CLEVR and our model’s answer.

In this paper, we show that a general model can achieve
strong visual reasoning from language. We use Conditional
Batch Normalization [14, 15, 16] with a Recurrent Neural Net-
work (RNN) and a Convolutional Neural Network (CNN) to
show that deep learning architectures built without strong priors
can learn underlying structure behind visual reasoning, directly
from language and images. We demonstrate this by achieving
state-of-the-art visual reasoning on CLEVR and finding struc-
tured patterns while exploring the internals of our model.

2. Method

Our model processes the multi-modal question-image input us-
ing a RNN and CNN combined via Conditional Batch Normal-
ization (CBN). CBN has proven highly effective for image styl-
ization [14, 16] and traditional visual question answering tasks
[15]. We start by explaining CBN in Section 2.1 and then de-
scribe our model in Section 2.2.

2.1. Conditional batch normalization

Batch normalization (BN) is a widely used technique to improve
neural network training by normalizing activations throughout
the network with respect to each mini-batch. BN has been
shown to accelerate training and improve generalization by re-
ducing covariate shift throughout the network [17]. To explain
BN, we define B = {Fi,.,.,.}Ni=1 as a mini-batch of N sam-
ples, where F corresponds to input feature maps whose sub-
scripts c, h, w refers to the cth feature map at the spatial loca-
tion (h,w). We also define γc and βc as per-channel, trainable
scalars and ε as a constant damping factor for numerical stabil-



Figure 2: The linguistic pipeline (left), visual pipeline (middle),
and CBN residual block architecture (right) of our model.

ity. BN is defined at training time as follows:

BN(Fi,c,h,w|γc, βc) = γc
Fi,c,w,h − EB[F·,c,·,·]√

VarB[F·,c,·,·] + ε
+ βc. (1)

Conditional Batch Normalization (CBN) [14, 15, 16] in-
stead learns to output new BN parameters γ̂i,c and β̂i,c as a
function of some input xi:

γ̂i,c = fc(xi) β̂i,c = hc(xi), (2)

where f and h are arbitrary functions such as neural networks.
Thus, f and h can learn to control the distribution of CNN acti-
vations based on xi.

Combined with ReLU non-linearities, CBN empowers a
conditioning model to manipulate feature maps of a target CNN
by scaling them up or down, negating them, shutting them off,
selectively thresholding them, and more. Each feature map is
modulated independently, giving the conditioning model an ex-
ponential (in the number of feature maps) number of ways to
affect the feature representation.

Rather than output γ̂i,c directly, we output ∆γ̂i,c, where:

γ̂i,c = 1 + ∆γ̂i,c, (3)

since initially zero-centered γ̂i,c can zero out CNN feature map
activations and thus gradients. In our implementation, we opt
to output ∆γ̂i,c rather than γ̂i,c, but for simplicity, in the rest of
this paper, we will explain our method using γ̂i,c.

2.2. Model

Our model consists of a linguistic pipeline and a visual pipeline
as depicted in Figure 2. The linguistic pipeline processes a
question q using a Gated Recurrent Unit (GRU) [18] with 4096
hidden units that takes in learned, 200-dimensional word em-
beddings. The final GRU hidden state is a question embedding
eq . From this embedding, the model predicts the CBN param-
eters (γm,n

i,· ,βm,n
i,· ) for the nth CBN layer of the mth residual

block via linear projection with a trainable weight matrix W
and bias vector b:

(γm,n
i,· ,βm,n

i,· ) = Wm,neq + bm,n (4)

The visual pipeline extracts 14 × 14 image features using
the conv4 layer of a ResNet-101 [2] pre-trained on ImageNet
[19], as done in [10] for CLEVR. Image features are processed
by a 3 × 3 convolution followed by several — 3 for our model
— CBN residual blocks with 128 feature maps, and a final clas-
sifier. The classifier consists of a 1× 1 convolution to 512 fea-
ture maps, global max-pooling, and a two-layer MLP with 1024
hidden units that outputs a distribution over final answers.

Each CBN residual block starts with a 1 × 1 convolution
followed by two 3 × 3 convolutions with CBN as depicted in
Figure 2. Drawing from [11, 20], we concatenate coordinate
feature maps indicating relative spatial position (scaled from
−1 to 1) to each residual block’s input. We train our model
end-to-end from scratch with Adam (learning rate 3e−4) [21],
early stopping on the validation set, weight decay (1e−5), batch
size 64, and BN and ReLU throughout the visual pipeline, using
only image-question-answer triplets from the training set.

3. Experiments
3.1. CLEVR dataset

CLEVR is a generated dataset consisting of 700K (image, ques-
tion, answer, program) tuples. Images contain 3D-rendered ob-
jects of various shapes, materials, colors, and sizes. Questions
are multi-step and compositional in nature, as illustrated in Fig-
ure 1. They range from counting questions such as “How many
green objects have the same size as the green metallic block?”
to comparison questions such as “Are there fewer tiny yellow
cylinders than yellow metal cubes?” Answers are each one
word from a set of 28 possible answers. Programs are an ad-
ditional supervisory signal consisting of step-by-step instruc-
tions, such as filter shape[cube], relate[right],
and count, on how to answer the question. Program labels
are difficult to generate or come by for real world datasets. Our
model avoids using this extra supervision, learning to reason
effectively directly from linguistic and visual input.

3.2. Results

Our results on CLEVR are shown in Table 1. Our model
achieves a new overall state-of-the-art, outperforming humans
and previous, leading models, which often use additional pro-
gram supervision. Notably, CBN outperforms Stacked Atten-
tion networks (CNN+LSTM+SA in 1) by 21.0%. Stacked At-
tention networks are highly effective for visual question answer-
ing with simpler questions [22] and are the previously leading
model for visual reasoning that does not build in reasoning,
making them a relevant baseline for CBN. We note also that our
model’s pattern of performance more closely resembles that of
humans than other models do. Strong performance (< 1% er-
ror) in exist and query attribute categories is perhaps
explained by our model’s close resemblance to standard CNNs,
which traditionally excel at these classification-type tasks. Our
model also demonstrates strong performance on more complex
categories such as count and compare attribute.

Comparing numbers of objects gives our model more diffi-
culty, understandably so; this question type requires more high-
level reasoning steps — querying attributes, counting, and com-
paring — than other question type. The best model from [10]
beats our model here but is trained with extra supervision via
700K program labels. As shown in Table 1, the equivalent, more
comparable model from [10] which uses 9K program labels sig-
nificantly underperforms our method in this category.



Model Overall Count Exist Compare
Numbers

Query
Attribute

Compare
Attribute

Human [10] 92.6 86.7 96.6 86.5 95.0 96.0

Q-type baseline [10] 41.8 34.6 50.2 51.0 36.0 51.3
LSTM [10] 46.8 41.7 61.1 69.8 36.8 51.8
CNN+LSTM [10] 52.3 43.7 65.2 67.1 49.3 53.0
CNN+LSTM+SA [11] 76.6 64.4 82.7 77.4 82.6 75.4
N2NMN* [13] 83.7 68.5 85.7 84.9 90.0 88.7
PG+EE (9K prog.)* [10] 88.6 79.7 89.7 79.1 92.6 96.0
PG+EE (700K prog.)* [10] 96.9 92.7 97.1 98.7 98.1 98.9
CNN+LSTM+RN†[11] 95.5 90.1 97.8 93.6 97.9 97.1

CNN+GRU+CBN 97.6 94.5 99.2 93.8 99.2 99.0

Table 1: CLEVR accuracy by baseline methods, competing methods, and our method (CBN). Methods denoted with (*) use extra
supervisory information through program labels. Methods denoted with (†) use data augmentation and no pre-trained CNN.

3.3. What does conditional batch norm learn?

To understand what our model learns, we use t-SNE [23] to
visualize the CBN parameter vectors (γ,β), of 2,000 ran-
dom validation points, modulating first and last CBN lay-
ers in our model, as shown in Figure 4. The (γ,β)
parameters of the first and last CBN layers are grouped
by the low-level and high-level reasoning functions nec-
essary to answer CLEVR questions, respectively. For
example, the CBN parameters for equal color and
query color are close for the first layer but apart for
the last layer, and the same is true for equal shape
and query shape, equal size and query size, and
equal material and query material. Conversely,
equal shape, equal size, and equal material CBN
parameters are grouped in the last layer but split in the first layer.
Similar patterns emerge when visualizing residual block activa-
tions. Thus, we see that CBN learns a sort of function-based
modularity, directly from language and image inputs and with-
out an architectural prior on modularity. Simply with end-to-
end training, our model learns to handle not only different types
of questions differently, but also different types of question sub-
parts differently, working from low-level to high-level processes
as is the proper approach to answer CLEVR questions.

Additionally, we observe that many points that break the
previously mentioned clustering patterns do so in meaningful
ways. For example, Figure 4 shows that some count questions
have last layer CBN parameters far from those of other count
questions but close to those of exist questions. Closer ex-
amination reveals that these count questions have answers of
either 0 or 1, making them similar to exist questions.

3.4. Error analysis

An analysis of our model’s errors reveals that 94% of its count-
ing mistakes are off-by-one errors, indicating our model has
learned underlying concepts behind counting, such as close re-
lationships between close numbers.

As shown in Figure 3, our CBN model struggles more on
questions that require more steps, as indicated by the length of
the corresponding CLEVR programs; error rates for questions
requiring 10 or fewer steps are around 1.5%, while error rates
for questions requiring 17 or more steps are around 5.5%, more
than three times higher.

Furthermore, the model sometimes makes curious reason-
ing mistakes a human would not. In Figure 5, we show an exam-

Figure 3: Validation error rate by program length.

ple where our model correctly counts two cyan objects and two
yellow objects but simultaneously does not answer that there are
the same number of cyan and yellow objects. In fact, it does not
answer that the number of cyan blocks is more, less, or equal to
the number of yellow blocks. These errors could be prevented
by directly minimizing logical inconsistency, which is an inter-
esting avenue for future work orthogonal to our approach.

These types of mistakes in a state-of-the-art visual rea-
soning model suggest that more work is needed to truly
achieve human-like reasoning and logical consistency. We view
CLEVR as a curriculum of tasks and believe that the key to the
most meaningful and advanced reasoning lies in tackling these
last few percentage points of error.

4. Related Work
One leading approach for visual reasoning is the Program Gen-
erator + Execution Engine model from [10]. This approach con-
sists of a sequence-to-sequence Program Generator (PG), which
takes in a question and outputs a sequence corresponding to a
tree of composable Neural Modules, each of which is a two-
layer residual block similar to ours. This tree of Neural Mod-
ules is assembled to form the Execution Engine (EE) that then
predicts an answer from the image. The PG+EE model uses
a strong prior by training with program labels and explicitly
modeling the compositional nature of reasoning. Our approach
learns to reason directly from textual input without using addi-
tional cues or a specialized architecture.

This modular approach is part of a recent line of work in
Neural Module Networks [13, 24, 25]. Of these, End-to-End
Module Networks (N2NMN) [13] also tackle visual reasoning
but do not perform as well as other approaches. These methods
also use strong priors by modeling the compositionality of
reasoning, using program-level supervision, and building per-
module, hand-crafted neural architectures for specific functions.



Figure 4: t-SNE plots of γ, β of the first BN layer of the first residual block (left) and the last BN layer of the last residual block (right).
CBN parameters are grouped by low-level reasoning functions for the first layer and by high-level reasoning functions for the last layer.

Question Answer
How many yellow things are there? 2
How many cyan things are there? 2
Are there as many yellow things as cyan things? No
Are there more yellow things than cyan things? No
Are there fewer yellow things than cyan things? No

Figure 5: An interesting failure example where our model
counts correctly but compares counts erroneously. Its third an-
swer is incorrect and inconsistent with its other answers.

Relation Networks (RNs) from [11] are another leading ap-
proach for visual reasoning. RNs use an MLP to carry out
pairwise comparisons over each location of extracted convolu-
tional features over an image, including LSTM-extracted ques-
tion features as input to this MLP. RNs then element-wise sum
over the resulting comparison vectors to form another vector
from which a final classifier predicts the answer. This approach
is end-to-end differentiable and trainable from scratch to high
performance, as we show in Table 1. Our approach lifts the
explicitly relational aspect of this model, freeing our approach
from the use of a comparison-based prior, as well as the scaling
difficulties of pairwise comparisons over spatial locations.

CBN itself has its own line of work. The results of [14, 16]
show that the closely related Conditional Instance Normaliza-
tion is able to successfully modulate a convolutional style-
transfer network to quickly and scalably render an image in a
huge variety of different styles, simply by learning to output a
different set of BN parameters based on target style. For visual
question answering, answering general questions often of natu-
ral images, de Vries et al. [15] show that CBN performs highly
on real-world VQA and GuessWhat?! datasets, demonstrating
CBN’s effectiveness beyond the simpler CLEVR images. Their

architecture conditions 50 BN layers of a pre-trained ResNet.
We show that a few layers of CBN after a ResNet can also be
highly effective, even for complex problems. We also show how
CBN models can learn to carry out multi-step processes and rea-
son in a structured way — from low-level to high-level.

Additionally, CBN is essentially a post-BN, feature-wise
affine conditioning, with BN’s trainable scalars turned off.
Thus, there are many interesting connections with other con-
ditioning methods. A common approach, used for example in
Conditional DCGANs [26], is to concatenate constant feature
maps of conditioning information to the input of convolutional
layers, which amounts to adding a post-convolutional, feature-
wise conditional bias. Other approaches, such as LSTMs [27]
and Hierarchical Mixtures of Experts [28], gate an input’s fea-
tures as a function of that same input (rather than a separate,
conditioning input), which amounts to a feature-wise, condi-
tional scaling, restricted to between 0 and 1. CBN consists of
both scaling and shifting, each unrestricted, giving it more ca-
pacity than many of these related approaches. We leave explor-
ing these connections more in-depth for future work.

5. Conclusion

With a simple and general model based on CBN, we show it is
possible to achieve state-of-the-art visual reasoning on CLEVR
without explicitly incorporating reasoning priors. We show that
our model learns an underlying structure required to answer
CLEVR questions by finding clusters in the CBN parameters of
our model; earlier parameters are grouped by low-level reason-
ing functions while later parameters are grouped by high-level
reasoning functions. Simply by manipulating feature maps with
CBN, a RNN can effectively use language to influence a CNN to
carry out diverse and multi-step reasoning tasks over an image.
It is unclear whether CBN is the most effective general way to
use conditioning information for visual reasoning or other tasks,
as well as what precisely about CBN is so effective. Other ap-
proaches [26, 27, 28, 29, 30, 31, 32] employ a similar, repetitive
conditioning, so perhaps there is an underlying principle that ex-
plains the success of these approaches. Regardless, we believe
that CBN is a general and powerful technique for multi-modal
and conditional tasks, especially where more complex structure
is involved.
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