Differentiable Memory Allocation Mechanism For Neural Computing

Itamar Ben-Ari', Alan Joseph Bekker'

! Advanced Analytics, Intel, Israel

itamar.ben-ari@intel.com,

Abstract

Memory neural networks were recently introduced in several
variants. DNC by [1] which is one extensive implementation of
this kind of models make use of several mechanisms designed
to allow the iterative modification of external memory. Three
types of attention forms were presented. The attention mech-
anism which is in-charge of the memory allocation, involves
applying a sort operation on the memory blocks usage vector.
Since the sort operation is not differentiable, a workaround was
introduced to enable the back-propagation step. In our work
we propose an alternative differentiable allocation mechanism
in the form of a weighted soft-max on the usage vector of the
memory blocks. We show that our method achieves 1.75x in
training time on bAbI task, moreover we show that our pro-
posed method positively impacts the convergence, stability and
accuracy of the neural computer in a copy and repeat task.

1. Introduction

Since the analytical engine model was proposed in 1838 [2],
any designed computer is composed of two crucial mechanisms.
The CPU is in charge of the computational operations while the
memory holds the data to be processed. Despite the recent ad-
vances in Deep Learning architectures and algorithms, only a
few studies have shown to incorporate external memories to be
used by a neural network.

Recurrent neural networks and their two most famous variants
[3] and [4] differ from other deep learning models by being able
to share information between different time steps in sequential
data. The sharing of information is made possible by maintain-
ing a memory which is referred to as the network state. This
state is embedded inside the computational model. The work of
[5] was the first to propose a system consisting of a neural net-
work and an external memory resource. This work introduced
a new neural network model called the Neural Turing Machine
(NTM) which have shown to outperform standard LSTM mod-
els on simple tasks such as copying and sorting.

In Memory Networks [6], the authors presented a dynamic
memory neural model showing outstanding results on cogni-
tive tasks such as question and answering. This work proposed
a memory architecture for storing a knowledge database to rep-
resent the statements presented to the model. The work of [7]
described a similar architecture but unlike [6], it is trainable
end-to-end, making it more generally applicable in realistic set-
tings.

Undoubtedly, [1] extended all previous works in a sense that the
read and write controller operations were equipped with richer
mechanisms allowing iterative modification of external mem-
ory. In this work, the memory controller is designed to incor-
porate three types of attention forms. The first is the content
lookup (a.k.a associative recall) mechanism in which part of the
controller output is used as a memory key which is compared

alanbekker@gmail.com

against the memory blocks content. This produces a similarity
score which is used to select memory blocks with similar con-
tent, thus enabling information to be completed by the infor-
mation stored in the memory key. The second mechanism uses
a temporal link matrix to hold the consecutively written mem-
ory locations. This enables the controller to recover sequences
in the order they were written to. The third attention form is
the memory allocation mechanism which enables the controller
to reallocate memory blocks not being used. The selection of
blocks to be reallocated involves sorting of the memory blocks
according to a usage measure. Although the proposed model
is called a differential neural computer, the reallocation mech-
anism which involves sorting as part of the algorithm, is non
differentiable, causing the entire model to be non-differentiable.
The authors of the DNC ignore the non-differential part by pass-
ing the incoming gradients in the back-propagation step as is
effectively treating the operation as having an identity gradi-
ent. In our work we propose a differentiable allocation function
which replaces the sorting mechanism. We show that it pos-
itively impacts the convergence, stability and accuracy of the
neural computer.

The rest of this paper is organized as follows. First we de-
scribe the original DNC method, then we present our new al-
location mechanism and last we present our improved results
over the benchmark in a copy and repeat task and over the bAbl
dataset[8].

2. Method

The DNC architecture is composed of a control unit and a Mem-
ory Access Unit (MAU) (implemented as sub networks) which
are the equivalent of CPU and RAM in a standard computer.
The computation process at time step ¢ starts by feeding input
data to the controller which in turn outputs two vectors (&, v¢).
The vector &; is forwarded to the MAU and controls the reading
and writing of content to memory. The vector v; combined with
the Memory Access Unit output r; produces the DNC output:

Yyt = v + Wiy €))

2.1. Memory Access Unit

The memory of a Differentiable Neural Computer is a matrix
M., «n Where each row represents a memory block. The con-
troller reads and writes to M through the MAU by forward-
ing it a control vector &; at time step ¢. This vector contains
a sub vector vy € R™ representing new data to store in mem-
ory along with flags which are used to compute weight vectors
wy’,wi € [0,1]™, these weights are fuzzy memory block ad-
dresses the controller ask to read or write to. In addition, &
contains an erase vector e; € [0,1]" which selects memory
cells that should be overwritten. The read and write operations
are described by the following equations:

The read operation is defined by a weighted average of the
memory blocks:
re= M, w] @

The write operation is a weighted average of the memory
matrix M;_1 and v

My =M;10(1—we))+ wi'v, 3)

(1 —we/) can be viewed as fuzzy memory addresses of cells
the controller wants to keep. wi’v, is a weighted replication of
v which will write a scaled version of v; to each row.

2.2. Memory Addressing

The read and write address weights wy , w;’ are computed us-
ing a combination of three methods. Associative recall: where
a search key is compared to the content of each memory block
and selects the address of the most similar block. Sequential re-
trieval: where the memory blocks are retrieved in the (reverse)
order they were written. Free blocks list: where the memory
blocks are selected from a list of unused blocks. In the Associa-
tive recall method The control vector &; contains read and write
keys k", k. € R™. These keys are compared to the content
of each memory block using a cosine similarity function.

u-v

D(u,v) 4

l[ulll[v]
The control vector also contains read and write key strengths
Bt, B € [1,00]. A key and strength are combined to produce
a content-similarity softmax weight.

. exp{D(k, M 1[i,-])5}
Ci(k)li] = Sjexp{D(k, M¢-1]j,-])B}

where ¢ is the block index. The most similar block is (fuzzy)
selected. 3 controls the sharpness of the weight distribution. A
large 8 means we are effectively reading or writing to a single
block.

The sequential retrieval mechanism is less relevant to our
work and therefore we skip its explanation and refer the reader
to the original paper [1] In the Free Blocks List mechanism The
controller can pick the next available space for writing. In or-
der to do so, the MAU first computes how free or unused each
memory block is and store it in an allocation weight vector
a; € [0,1]™. The vector a; selects the most available block.
The controller sends the MAU an allocation gate g € [0, 1] to
select which memory addressing mechanism to use for writing.

(%)

Wi’ = giar+ (1 —g¢)Ce(k") (©)
where the final write address weight is defined by:
w’ =g, ©)

and gi° € [0, 1] is a memory protection gate sent by the con-
troller.
A block is not in use if the controller just read its content
and asked to free it by sending the MAU a free gate f; € [0, 1]
The memory usage vector u; € [0,1]™ is defined by the
recurrence relation:

up = (1 — ftw:—l) o (ut—1 + I T szu_l) (3

The original allocation vector a; is a sharper version of the
“non-usage” vector (1 — u). It is computed by computing a
free block list ¢ € Z™ which is defined by sorting the indices of

the memory blocks in ascending order of usage. The allocation
vector a; is defined by the following equation:

ar[¢e[j]] = (1 — ue[de[4]]) 1:[[y [i]] ©)

As stated in the introduction the proposed sorting method
is non differentiable, the authors of DNC suggested to neglect
this issue by assuming the gradient of the cost function in re-
spect to this layer is the identity function. They assumed the
other network parameters will compensate for this error in back-
propagating the gradients through this non-differentiable layer.
Instead we propose to replace the free block list mechanism pre-
viously executed by the sorting operation by a weighted soft-
max on the non-usage vector (1 — wu¢) for the computation of

at.
wli] = A0 = uiDB}

Sjexp{(1 — u[j])Ba}
where ¢ is the block index and 3, € [1,00] is a new learned
parameter which will be part of the control output vector ;.
The proposed weighted soft-max serves as an alternative weight
sharpening operation similar to the one used in the content sim-
ilarity mechanism.
From here until the end of the paper we dub to the original al-
location mechanism as Non-differentiable Memory Allocation
(NMA) and to our proposed mechanism we dub as Differen-
tiable Memory Allocation (DMA).

(10)

3. Experiments
3.1. Copy and repeat task

Ry L
VA '*Vy,l,umw.ﬂ\!mW,WM (i |

DMA mﬁ“‘

Figure 1: The accuracy in the copy and repeat task as a function
of the training step. It can be clearly seen the accuracy achieved
by our mechanism (DMA) in green outperforms the original one
(DMA) with blue color in terms of convergence time, stability
and the final obtained score.

In the “copy and repeat” task [14]. a random binary matrix
with a random number of columns is given to the network along
with the number of times it should be repeated (tiled along the
second dimension) in the output. The task configuration param-
eters were taken from [14] and are described below. The DNC
memory size was set to 16x16 and the controller, which was
implemented as an LSTM layer, was given a hidden state size
of 64 with 1 write head and 4 read heads.

For each sample, the size of the input matrix and the number
of repetitions were randomly selected from 4x{1,2} and {1,2}
respectively. We used the RMSProp solver with batch size of
16, learning rate 7 = 10~% and e = 107*° and run the op-
timization for 100k iterations. We used gradient clipping with

Figure 2: The accuracy in the bAbI task as a function of the
training steps. It can be clearly seen that the accuracy achieved
by our mechanism (NMA) in green was the same as the original
one (DMA) although the training time was reduced by 1.75x.

random input matrix

observation:
'start-marker' channel

'num-repeats' channel.

target: |
| 101100110110011011001 |
| P1e1014 ' o |

1| ‘end-marker' channel.

-+

tiled outﬁut matrix

Figure 3: The observations and targets are binary matrices. For
readability purposes we replaced zero paddings with blanks.
The observation random input matrix is comprised of i.i.d
uniform-random binary values. The target tiled output matrix
is comprised of the input matrix repeated for some number of
times. The number of columns of the input matrix and the num-
ber of times it is repeated in the target are both discrete random
variables distributed according to uniform distributions whose
parameters are configured at construction time.

norm 50 and clipped the controller and DNC output values to
20.

We calculated the average cross entropy loss and accuracy ev-
ery 100 iterations and plotted them in Figure 2. It can be clearly
seen that our proposed DMA method converges faster achieving
a lower cross entropy loss and higher accuracy than the NMA.
In addition the DMA loss and accuracy curves seem to be stable
than the NMA ones, we attribute this to the fact that the original
version of the model was non-differentiable and was apparently
prejudicing the optimization process.

3.2. bAbI task

The Facebook bAbDI dataset [8] is a synthetic dataset for testing
a models ability to retrieve facts and reason over them. Each
task tests a different skill that a question answering model ought
to have, such as coreference resolution, deduction, and induc-
tion. The task configuration parameters were taken from [1] and
are described below.

The DNC memory size was set to 64x64 and the controller,

TRAINING TIME (IN SECONDS) PER ITERATION

&3 mam DMA
e NMA

2
15
1
cs ““\
0
DMA NMA

Figure 4: Training time per one iteration, it can be seen that our
method (DMA) in greed took 1.15 sec while the regular DNC
in blue (NMA) took 2.02 sec, meaning we are 1.75x faster

Task 1: Single Supporting Fact
Mary went to the bathroom.
John moved to the hallway.
Mary travelled to the office.
Where is Mary? A:office

Figure 5: Task number 1 in bAbI dataset. The task consist with
a set of supporting facts and a deductive conclusion the network
is supposed to respond.

which was implemented as an LSTM layer, was given a hidden
state size of 64 with 1 write head and 4 read heads. We used the
RMSProp solver with batch size of 1, learning rate 7 = 10~3
and € = 107*° and run the optimization for 50k iterations. We
used gradient clipping with norm 50 and clipped the controller
and DNC output values to 20.

We calculated the average cross entropy loss and accuracy every
100 iterations and plotted them in Figure 2.

Since we replaced the sorting mechanism with the weighted
soft-max module we gain a significant speed-up. For each sam-
ple, DNC sorts the network memory in the feed-forward step. In
our DMA version we only compute the soft-max which requires
significantly less computation instructions. As can be seen in
3.1 in our proposed method each iteration takes 1.15 seconds
while it required 2.02 seconds to the NMA model, meaning we
achieved a speed-up of 1.75x in the training and inference time.

4. Conclusions

In this work we proposed a differentiable allocation mechanism
which replaced the original non-differentiable sorting function
in the DNC. We have shown that our method achieves 1.75x in
training time on bADbI task and positively impacts the conver-
gence, stability and accuracy of the neural computer in the copy
repeat task.

[1]

[2]

[5

[t}

[6

=

[7

—

[8

=

[9]

[10]

(11]

[12]

[13]

[14]

5. References

A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka,
A. Grabska-Barwinska, S. G. Colmenarejo, E. Grefenstette, T. Ra-
malho, J. Agapiou et al., “Hybrid computing using a neural net-
work with dynamic external memory,” Nature, vol. 538, no. 7626,
pp. 471-476, 2016.

A. G. Bromley, “Charles babbage’s analytical engine, 1838,” An-
nals of the History of Computing, vol. 4, no. 3, pp. 196-217, 1982.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evalu-
ation of gated recurrent neural networks on sequence modeling,”
arXiv preprint arXiv:1412.3555, 2014.

F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:
Continual prediction with 1stm,” 1999.

A. Graves, G. Wayne, and I. Danihelka, “Neural turing machines,”
arXiv preprint arXiv:1410.5401, 2014.

J. Weston, S. Chopra, and A. Bordes, “Memory networks,” arXiv
preprint arXiv:1410.3916, 2014.

S. Sukhbaatar, J. Weston, R. Fergus et al., “End-to-end memory
networks,” in Advances in neural information processing systems,
2015, pp. 2440-2448.

Facebook-Research, bAbI Facebook Data-set, 2017. [Online].
Available: https://research.fb.com/downloads/babi/

A. Kumar, O. Irsoy, P. Ondruska, M. lIyyer, J. Bradbury, I. Gul-
rajani, V. Zhong, R. Paulus, and R. Socher, “Ask me anything:
Dynamic memory networks for natural language processing,” in
International Conference on Machine Learning, 2016, pp. 1378—
1387.

A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lilli-
crap, “Meta-learning with memory-augmented neural networks,”
in International conference on machine learning, 2016, pp. 1842—
1850.

K. M. Hermann, T. Kocisky, E. Grefenstette, L. Espeholt, W. Kay,
M. Suleyman, and P. Blunsom, “Teaching machines to read and
comprehend,” in Advances in Neural Information Processing Sys-
tems, 2015, pp. 1693-1701.

O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in
Advances in Neural Information Processing Systems, 2015, pp.
2692-2700.

J. Weston, A. Bordes, S. Chopra, A. M. Rush, B. van Merriénboer,
A. Joulin, and T. Mikolov, “Towards ai-complete question
answering: A set of prerequisite toy tasks,” arXiv preprint
arXiv:1502.05698, 2015.

J. Ramapuram, Repeat Copy Task, 2017. [Online]. Available:
https://github.com/deepmind/dnc/blob/master/repeat_copy.py

