
Structured	Deep	Learning	for	
Context	Awareness	in	Speech	and	

Language	Processing

Kai Yu
Shanghai Jiao Tong University

Content

• Part	I:	Deep	learning	for	Speech	Recognition

• Part	II:	Multi-style	and	Context-aware	Training

• Part	III:	Structured	Deep	Learning	for	Context	
Awareness

Kai	Yu.	Structured	DL.	MLSLP	16 22Kai	Yu.	Structured	DL.	MLSLP	16

Part	I
Deep	learning	for	Speech	

Recognition

Slide 4

ˆH = argmax

H
p(o|H)P (H)

Slide 5

p(o) =

X

q

P (q)p(o|q)

=

X

q

Y

t

a

qt�1qtbqt(ot

)

Slide 7

O =

n

O(1)

, · · · ,O(S)

o

Slide 12

b

j

(o
t

) =

Mj
X

m=1

c

jm

N
⇣

o
t

;µ(jm)

,⌃(jm)

⌘

N (o;µ,⌃) = (2⇡)

�D
2 |⌃|� 1

2
exp

⇢

�1

2

(o� µ)>⌃�1

(o� µ)

�

Slide 13

ˆM
ML

= argmax

M
log p (O|H,M)

Q
⇣

M;

ˆM
⌘

= �1

2

X

t,m

�

m

(t)

⇢

log |⌃(m)|+
⇣

o
t

� µ(m)

⌘> ⇣
⌃(m)

⌘�1

⇣

o
t

� µ(m)

⌘

�

ˆµ(m)

=

P

t

�

m

(t)o
t

P

t

�

m

(t)

ˆ⌃(m)

= diag

P

t

�

m

(t)

�

o
t

� ˆµ(m)

� �

o
t

� ˆµ(m)

�>

P

t

�

m

(t)

!

�

m

(t) = P

⇣

q

t

= j, c

t

= m|O,

ˆM
⌘

Slide 15

M
MAP

= argmax

M
log p (M|O,H) = argmax

M
{log p (O|M,H) + log p (M|�)}

Q
⇣

M;

ˆM
⌘

= log p (M|�)� 1

2

X

t,m

�

m

(t)

⇢

log |⌃(m)|+
⇣

o
t

� µ(m)

⌘> ⇣
⌃(m)

⌘�1

⇣

o
v

� µ(m)

⌘

�

ˆµ(m)

=

⌧

˜µ(m)

+

P

t

�

m

(t)o
t

⌧ +

P

t

�

m

(t)

Slide 17

ˆM(s)

= T (s)

(M)

Slide 18

ˆµ(sm)

= A(s)µ(m)

+ b(s)

= W(s)⇠(m)

Q
⇣

T ;

ˆT ,

ˆM
⌘

= �1

2

X

t,m

�

m

(t)

⇣

o
t

�W⇠(m)

⌘> ⇣
⌃(m)

⌘�1

⇣

o
t

�W⇠(m)

⌘

G
d

=

X

t,m

�

m

(t)

�

(m)

dd

⇠(m)

⇣

⇠(m)

⌘>

1

Kai	Yu.	Structured	DL.	MLSLP	16 44Kai	Yu.	Structured	DL.	MLSLP	16

AM:	CD-DNN-HMM	v.s.	GMM-HMM

[1]

5Kai	Yu.	Structured	DL.	MLSLP	16

AM:	LSTM

Kai	Yu.	Structured	DL.	MLSLP	16 6

LSTM BLSTM

[2]

6Kai	Yu.	Structured	DL.	MLSLP	16

AM:	LSTM-CTC

Kai	Yu.	Structured	DL.	MLSLP	16 7

B is an operator that removes first the repeated
labels, then the blanks from alignments, for example,

B(a,b,b,b,c,c) = B(a,-,b,-,c,c) = (a,b,c)

[3]

Slide 7

L
ce

=

T

X

t=1

logP (y

t

|x
t

)

L
ctc

= logP (y|x)
Slide 4

ˆH = argmax

H
p(o|H)P (H)

Slide 5

p(o) =

X

q

P (q)p(o|q)

=

X

q

Y

t

a

qt�1qtbqt(ot

)

Slide 7

O =

n

O(1)

, · · · ,O(S)

o

Slide 12

b

j

(o
t

) =

Mj
X

m=1

c

jm

N
⇣

o
t

;µ(jm)

,⌃(jm)

⌘

�

m

(t) = P (q

t

= j, g

t

= m|O,

ˆM)

N (o;µ,⌃) = (2⇡)

�D
2 |⌃|� 1

2
exp

⇢

�1

2

(o� µ)>⌃�1

(o� µ)

�

Slide 13

ˆM
ML

= argmax

M
log p (O|H,M)

Q
⇣

M;

ˆM
⌘

= �1

2

X

t,m

�

m

(t)

⇢

log |⌃(m)|+
⇣

o
t

� µ(m)

⌘> ⇣
⌃(m)

⌘�1

⇣

o
t

� µ(m)

⌘

�

ˆµ(m)

=

P

t

�

m

(t)o
t

P

t

�

m

(t)

ˆ⌃(m)

= diag

P

t

�

m

(t)

�

o
t

� ˆµ(m)

� �

o
t

� ˆµ(m)

�>

P

t

�

m

(t)

!

�

m

(t) = P

⇣

q

t

= j, c

t

= m|O,

ˆM
⌘

Slide 15

M
MAP

= argmax

M
log p (M|O,H) = argmax

M
{log p (O|M,H) + log p (M|�)}

Q
⇣

M;

ˆM
⌘

= log p (M|�)� 1

2

X

t,m

�

m

(t)

⇢

log |⌃(m)|+
⇣

o
t

� µ(m)

⌘> ⇣
⌃(m)

⌘�1

⇣

o
v

� µ(m)

⌘

�

ˆµ(m)

=

⌧

˜µ(m)

+

P

t

�

m

(t)o
t

⌧ +

P

t

�

m

(t)

Slide 17

ˆM(s)

= T (s)

(M)

1

Slide 7

L
ce

=

T

X

t=1

logP (y

t

|x
t

)

L
ctc

= logP (y|x)
Slide 4

ˆH = argmax

H
p(o|H)P (H)

Slide 5

p(o) =

X

q

P (q)p(o|q)

=

X

q

Y

t

a

qt�1qtbqt(ot

)

Slide 7

O =

n

O(1)

, · · · ,O(S)

o

Slide 12

b

j

(o
t

) =

Mj
X

m=1

c

jm

N
⇣

o
t

;µ(jm)

,⌃(jm)

⌘

�

m

(t) = P (q

t

= j, g

t

= m|O,

ˆM)

N (o;µ,⌃) = (2⇡)

�D
2 |⌃|� 1

2
exp

⇢

�1

2

(o� µ)>⌃�1

(o� µ)

�

Slide 13

ˆM
ML

= argmax

M
log p (O|H,M)

Q
⇣

M;

ˆM
⌘

= �1

2

X

t,m

�

m

(t)

⇢

log |⌃(m)|+
⇣

o
t

� µ(m)

⌘> ⇣
⌃(m)

⌘�1

⇣

o
t

� µ(m)

⌘

�

ˆµ(m)

=

P

t

�

m

(t)o
t

P

t

�

m

(t)

ˆ⌃(m)

= diag

P

t

�

m

(t)

�

o
t

� ˆµ(m)

� �

o
t

� ˆµ(m)

�>

P

t

�

m

(t)

!

�

m

(t) = P

⇣

q

t

= j, c

t

= m|O,

ˆM
⌘

Slide 15

M
MAP

= argmax

M
log p (M|O,H) = argmax

M
{log p (O|M,H) + log p (M|�)}

Q
⇣

M;

ˆM
⌘

= log p (M|�)� 1

2

X

t,m

�

m

(t)

⇢

log |⌃(m)|+
⇣

o
t

� µ(m)

⌘> ⇣
⌃(m)

⌘�1

⇣

o
v

� µ(m)

⌘

�

ˆµ(m)

=

⌧

˜µ(m)

+

P

t

�

m

(t)o
t

⌧ +

P

t

�

m

(t)

Slide 17

ˆM(s)

= T (s)

(M)

1

Slide 7

L
ce

=

T

X

t=1

logP (y

t

|x
t

)

L
ctc

= logP (y|x)

P (y|x) =
X

a2B�1
(y)

P (a|x)

Slide 4

ˆH = argmax

H
p(o|H)P (H)

Slide 5

p(o) =

X

q

P (q)p(o|q)

=

X

q

Y

t

a

qt�1qtbqt(ot

)

Slide 7

O =

n

O(1)

, · · · ,O(S)

o

Slide 12

b

j

(o
t

) =

Mj
X

m=1

c

jm

N
⇣

o
t

;µ(jm)

,⌃(jm)

⌘

�

m

(t) = P (q

t

= j, g

t

= m|O,

ˆM)

N (o;µ,⌃) = (2⇡)

�D
2 |⌃|� 1

2
exp

⇢

�1

2

(o� µ)>⌃�1

(o� µ)

�

Slide 13

ˆM
ML

= argmax

M
log p (O|H,M)

Q
⇣

M;

ˆM
⌘

= �1

2

X

t,m

�

m

(t)

⇢

log |⌃(m)|+
⇣

o
t

� µ(m)

⌘> ⇣
⌃(m)

⌘�1

⇣

o
t

� µ(m)

⌘

�

ˆµ(m)

=

P

t

�

m

(t)o
t

P

t

�

m

(t)

ˆ⌃(m)

= diag

P

t

�

m

(t)

�

o
t

� ˆµ(m)

� �

o
t

� ˆµ(m)

�>

P

t

�

m

(t)

!

�

m

(t) = P

⇣

q

t

= j, c

t

= m|O,

ˆM
⌘

Slide 15

M
MAP

= argmax

M
log p (M|O,H) = argmax

M
{log p (O|M,H) + log p (M|�)}

Q
⇣

M;

ˆM
⌘

= log p (M|�)� 1

2

X

t,m

�

m

(t)

⇢

log |⌃(m)|+
⇣

o
t

� µ(m)

⌘> ⇣
⌃(m)

⌘�1

⇣

o
v

� µ(m)

⌘

�

ˆµ(m)

=

⌧

˜µ(m)

+

P

t

�

m

(t)o
t

⌧ +

P

t

�

m

(t)

1

7Kai	Yu.	Structured	DL.	MLSLP	16

AM:	Very	Deep	CNN	and	CLDNN

Kai	Yu.	Structured	DL.	MLSLP	16 8

The	typical	speech	inputs,	with	static,	
delta	and double	delta	features,	can	
be	represented	as	3	feature	maps	
and	each	of	them	can	be	viewed	as	
an	image-map	with	a	size	of	
#times	x	#freqs

[4][5]

8Kai	Yu.	Structured	DL.	MLSLP	16

AM:	Performance	Gain (swbd)	[6][7]

18.6

14.2 14.4

13.2

11.8

GMM DNN LSTM CNN CLDNN

GMM DNN LSTM CNN CLDNN

9Kai	Yu.	Structured	DL.	MLSLP	16

AM:	Performance	Gain (aurora4)	[8][9]

23.6

13.4 12.4
10.6 10.6

8.8

AVERAGE	WER
Average	WER

10Kai	Yu.	Structured	DL.	MLSLP	16

LM:	FDNN	v.s.	N-gram

Kai	Yu.	Structured	DL.	MLSLP	16 11

w0 w1 wk-2 wk-1 wk

Slide 63

�w
t

= �⌘rL
ce

(w
t

) + ↵�w
t�1

� � (w
t�1

�w
0

)

Slide 68

R(⇤) =

1

2

�

�Wt

l

SD

�Wmean

l

SD

�

�

2

2

+

1

2

�

�bt

l

SD

� bmean

l

SD

�

�

2

2

(t = 1, 2, 3, · · · , T)

Slide 74

ˆH = argmax

H
P (H|O) = argmax

H
p (O|H)

| {z }

acoustic model

language model

z }| {

P (H)

P (H) =

K+1

Y

k=1

P (w

k

|w
1

, · · · , w
k�1

)

P (w

k

|w
1

, · · · , w
k�1

) = P (w

k

|w
k�1

, · · · , w
k�n+1

)

W

k�1

k�n+1

:

= w

k�1

, · · · , w
k�n+1

P

�

w

k

|W k�1

k�n+1

�

=

X

m

�

m

P

m

�

w

k

|W k�1

k�n+1

�

V · V n�1

= V

n

Slide 77

P

�

w

k

|W k�1

k�n+1

�

=

X

m

�

m

P

m

�

w

k

|W k�1

k�n+1

�

X

m

�

m

= 1

�̂ = argmax

�
{P (H)}

�̂m = argmin

�m

(

X

H

P (H|O)L (H,H
ref

)

)

�̂m = argmax

�m

(

log

X

H

p (O|H)P (H)

)

6

Slide 63

�w
t

= �⌘rL
ce

(w
t

) + ↵�w
t�1

� � (w
t�1

�w
0

)

Slide 68

R(⇤) =

1

2

�

�Wt

l

SD

�Wmean

l

SD

�

�

2

2

+

1

2

�

�bt

l

SD

� bmean

l

SD

�

�

2

2

(t = 1, 2, 3, · · · , T)

Slide 74

ˆH = argmax

H
P (H|O) = argmax

H
p (O|H)

| {z }

acoustic model

language model

z }| {

P (H)

P (H) =

K+1

Y

k=1

P (w

k

|w
1

, · · · , w
k�1

)

P (w

k

|w
1

, · · · , w
k�1

) = P (w

k

|w
k�1

, · · · , w
k�n+1

)

W

k�1

k�n+1

:

= w

k�1

, · · · , w
k�n+1

P

�

w

k

|W k�1

k�n+1

�

=

X

m

�

m

P

m

�

w

k

|W k�1

k�n+1

�

V · V n�1

= V

n

Slide 77

P

�

w

k

|W k�1

k�n+1

�

=

X

m

�

m

P

m

�

w

k

|W k�1

k�n+1

�

X

m

�

m

= 1

�̂ = argmax

�
{P (H)}

�̂m = argmin

�m

(

X

H

P (H|O)L (H,H
ref

)

)

�̂m = argmax

�m

(

log

X

H

p (O|H)P (H)

)

6

[10]

11Kai	Yu.	Structured	DL.	MLSLP	16

LM:	RNN	and	LSTM

Kai	Yu.	Structured	DL.	MLSLP	16 12

[11]

12Kai	Yu.	Structured	DL.	MLSLP	16

LM:	Performance	Improvement	[12]

Kai	Yu.	Structured	DL.	MLSLP	16 1313Kai	Yu.	Structured	DL.	MLSLP	16

What Issues Have DL Addressed?
• Hierarchical	feature representation

Suitable for task

164 9 Feature Representation Learning in Deep Neural Networks

Table 9.2 Comparison of feature-transform-based speaker-adaptation techniques for GMM-
HMMs, a shallow, and a deep NN
Adaptation technique CD-GMM-HMM

(40-mixture)
CD-MLP-HMM
(1 × 2,048)

CD-DNN-HMM
(7 × 2,048)

Speaker independent 23.6 % 24.2 % 17.1 %

+ VTLN 21.5 % (−9 %) 22.5 % (−7 %) 16.8 % (−2 %)

+ fMLLR/fDLR×4 20.4 % (−5 %) 21.5 % (−4 %) 16.4 % (−2 %)

Word-error rates (WER) for Hub5’00-SWB (relative change in parentheses). (Summarized from
Seide et al. [27])

VTLN warps the frequency axis of the filter-bank analysis to account for the
fact that the locations of vocal-tract resonances vary roughly monotonically with
the vocal tract length of the speaker. This is done in both training and testing with
20 quantized warping factors from 0.8 to 1.18. During the training, the optimal
warping factor can be found using the expectation–maximization (EM) algorithm
by repeatedly selecting the best factor given the current model and then updating
the model using the selected factor. During the testing, the system can pick the best
factor by running recognition for all factors and using the highest cumulative log
probability.

On the other hand, fMLLR applies an affine transform to the feature vector so
that the transformed feature better matches the model. It is typically applied to the
testing utterance by first generating recognition results using the raw feature and
then re-recognizing the speech with the transformed feature. This process can be
iterated for several times. For GMM-HMMs, fMLLR transforms are estimated to
maximize the likelihood of the adaptation data given the model. For DNNs, they are
optimized to maximize cross entropy (with backpropagation), which is a discrimina-
tive criterion. This procedure is thus referred as feature-space discriminative linear
regression (fDLR) [27]. The transformation may be applied to each input vector
(which is typically a concatenation of multiple frames of features) in the DNN or
applied to individual frames, prior to concatenation.

Table 9.2, extracted from [27], compares the effectiveness of VTLN and
fMLLR/fDLR on GMMs, shallow multilayer perceptrons (MLPs), and DNNs. It
can be observed that both VTLN and fMLLR are important for GMMs to reduce
speaker variability. In fact, they provide 9 and 5 % relative error rate reduction,
respectively. These techniques are also important for shallow MLPs with 7 and 4 %
relative WER reduction. However, these techniques are less important on the DNN
systems and provide only 2 % relative error reduction over the speaker-independent
baseline DNN system. This observation indicates that DNNs are more robust to the
speaker variations than GMMs and shallow MLPs.

[13]

14Kai	Yu.	Structured	DL.	MLSLP	16

Deep Learning + Big Data
≠ End_of_SLT_Research

• Real world data is always non-homogeneous

Structured Deep Learning

• From data-driven to data+knowledge driven

Prior	knowledge	incorporation

15Kai	Yu.	Structured	DL.	MLSLP	16

Part	II
Multi-style and Context-aware

Training

What Issues DL Have Not Addressed?
sen as an ideal task for this study. Moreover, besides our interest
in analyzing and improving such a practical system, the large
volume of the available analytic material with a broad coverage
of the real life acoustics can ensure the statistical significance.
We don’t know of any good alternative choice from the public
domain speech database more suitable for this analytic study.

Specifically, we trained a pair of GMM and DNN mod-
els with a comparable setup using 400 hr VS/SMD data. The
GMM is a discriminative model trained with the feature-space
minimum phone error rate (fMPE) [10] and the boosted MMI
(bMMI) [9] criteria. The front-end is the 39-dimension MFCC
feature. The DNN was trained using the cross entropy (CE) cri-
teria and the front-end is the 87-dimension log filter bank (LFB)
feature with a context window of 11 frames. The two models
shared the same training data, decision tree, and the same MLE
seed model used for the lattice generation in the GMM and the
senone state alignment in the DNN.

The analytic material consists of 100 hr VS/SMD test data
randomly sampled from the deployment with roughly the same
distribution as the training data. A list of interested meta tags,
extracted from the search log or generated offline, were used to
partition the analytic material into disjoint “condition” specific
analytic sets. The “condition specific analytic data sets were
then used to evaluate and compare the distinct error patters for
the pair of GMM and DNN models. In particular, for the con-
tinuous valued meta tags, e.g. the SNR and the speaking rate,
we implemented some simple smoothing for a more consistent
and smoothed error pattern.

The overall performance comparison of the CD-GMM-
HMM and CD-DNN-HMM is summarized in Table 1. We ob-
tain 20.3% and 25.1% WERRs in the DNN compared to the
baseline GMM for the VS and SMD task respectively.

Next, we will first analyze the distinct phone error pattern
in the CD-GMM-HMM and CD-DNN-HMM; then compare the
robustness performance pattern of the two models with respect
to the different SNR, channel, and speaking rate.

Table 1: Overall performance comparison of the 400 hr CD-
GMM-HMM and CD-DNN-HMM VS/SMD models.

Task GMM(%) DNN(%) WERR (%)
VS 30.4 24.3 20.3
SMD 19.9 15.0 25.1

3. Phone Error Pattern Analysis
Figure 1 illustrates the phone error rate (PER) of the CD-GMM-
HMM and CD-DNN-HMM rendered by the decreasing order of
the phone error rate reduction (PERR). It can be seen that the
phone error rate for every phoneme was reduced in the DNN
model and the PERRs range from 15.6% to 39.8%. On av-
erage, the CD-DNN-HMM yields 27.9% PERR compared to
the CD-GMM-HMM. This indicates that the DNN can gener-
ate significantly better classification boundary than the GMM
discriminatively trained with the fMPE and bMMI criteria.

We further observed that the DNN model is more effective
in modeling consonants comparing to the GMM. Certain con-
sonants, which are “hard” to discriminate in the GMM, obtain
notably larger performance boost in the DNN model. Overall,
the DNN model exhibits a much smoother PER contour. In par-
ticular, “[zh]” and “[dn]” have significantly higher PERs com-
pared to all other phonemes in the GMM. Their PERs drop from
21.9% and 20.9% to 14.9% and 14.5% respectively in the DNN

0

10

20

30

40

50

-2

2

6

10

14

18

22

26

30
m sh uw
k oy n hh
l zh iy g v b ae aa dh y aw
f r ah ng ow jh ao ax p ey ih er uh w t ch d ay eh s th z

PE
RR

 (%
)

PE
R

(%
)

Phoneme

PER (GMM-HMM)
PER (CD-DNN-HMM)
PERR (DNN w.r.t. GMM)

Figure 1: Phone error rate (PER) of the CD-GMM-HMM and
CD-DNN-HMM rendered by ordering the phonemes by the de-
creasing order of phone error rate reduction (PERR).

model. These two phonemes remain on the top PER phoneme
list in the DNN model though with much smaller performance
gap with other phonemes.

We conducted the phone error analysis for the VS and the
SMD task separately and obtained the similar results. This fur-
ther confirmed the observation we made is task independent.

4. Robustness Performance Analysis
In this section, we will discuss and compare the robustness per-
formance pattern of the GMM and DNN models with respect to
the different SNR, channel, and speaking rate using the method-
ology described in Section 2.

4.1. Noise Robustness

The environmetal noise can significantly degrade the speech
recognition performance. Technologies that allow the speech
recognition perform well in the diverse acoustic conditions is
criticall for the success of the mobile speech recognition.

To study the noise robustness of the deep learning acous-
tic model, we compared the error pattern of the GMM and
DNN models under different SNR levels with the results sum-
marized in Figure 2 and Figure 3 for the VS and SMD respec-
tively. The CD-DNN-HMM significantly outperforms the CD-
GMM-HMM at all SNR levels. The consistent performance
gain across all SNR levels suggests that the DNN is in general a
more powerful model which can improve the ASR performance
not only on the clean speech but also on the noisy speech with
a wide range of noise levels. Further comparing the perfor-
mance of the CD-DNN-HMM across the different SNRs, we
found that the CD-DNN-HMM yields almost the uniform per-
formance gain over the CD-GMM-HMM. This distinct pattern
is shared between the VS and SMD tasks.

To measure the noise robustness of the DNN, we calculated
the relative performance degradation per 1dB SNR drop. For
the VS, as the SNR drops from 40dB to 0dB, the WERs increase
from 18% to 34% and the SNR per dB drop introduces about
2% relative performance degradation. For the SMD, within the
same SNR range, the WERs increase from 12% to 18% and the
SNR per dB drop results in 1% relative performance degrada-
tion. The quantitative difference of the sensitivity to the noise
level between these tasks is due to the fact that the SMD has
much lower LM perplexity.

1896

Noise Robustness

0
1
2
3
4
5
6
7
8
9
10

14

22

30

38

46

54

-5 0 5 10 15 20 25 30 35 40

H
ist

og
ra

m
 (%

)

W
ER

 (%
)

SNR (dB)

Data Dist.(VS)
GMM-HMM (VS)
CD-DNN-HMM (VS)

Figure 2: Performance comparison of CD-GMM-HMM and
CD-DNN-HMM at different SNR levels for the VS task.

0
1
2
3
4
5
6
7
8
9
10

10

14

18

22

26

30

-5 0 5 10 15 20 25 30 35 40

H
ist

og
ra

m
 (%

)

W
ER

 (%
)

SNR (dB)

Data Dist (SMD).
GMM-HMM (SMD)
CD-DNN-HMM (SMD)

Figure 3: Performance comparison of the CD-GMM-HMM and
CD-DNN-HMM at different SNR levels for the SMD task.

The speech recognition performance of the DNN drops sig-
nificantly as the noise level increases within the normal range
for the mobile speech application. This suggests the noise
robustness remains as an important research area. Speech
enhancement, noise robust acoustic features, or other multi-
condition learning technologies need to be explored to bridge
the performance gap and further improve the overall perfor-
mance of the deep learning based acoustic model.

4.2. Channel Mismatch

The channel mismatch is another major source of the speech
recognition performance degradation. The channel robustness
issue is a traditional speech recognition robustness topic which
has been researched for many years. It is also particularly im-
portant for the mobile speech application since typically the mo-
bile application serves a large number of different devices from
many different phone manufactures. The channel robustness is
an indispensable feature for a successful mobile speech recog-
nition system.

In this session, we discuss whether the channel mismatch
issue still exists as a distinct speech recognition robustness
problem or it has been largely resolved with the invariant and se-
lective feature learning in the deep learning technology. Specif-
ically, we compared the performance of the CD-GMM-HMM
and CD-DNN-HMM on four different mobile devices from dif-
ferent manufactures with the comparison results summarized in

0

5

10

15

20

25

30

11

15

19

23

27

31

35

39

A B C D
Device Type

H
ist

og
ra

m
 (%

)

W
ER

 (%
)

Data Dist. (SMD)
Data Dist. (VS)
GMM SMD)
DNN (SMD)
GMM (VS)

Figure 4: Performance comparison of CD-GMM-HMM and
CD-DNN-HMM models on four different devices.

Figure 4.
In the CD-DNN-HMM, we observed consistent word er-

ror rate reduction for all four selected devices both on the VS
and SMD tasks comparing to the CD-GMM-HMM. The DNN
yields nearly uniform performance gain on all four devices and
the pattern is shared between the VS and SMD tasks. This once
again verifies that the DNN is a generally more discriminative
model compared to the GMM. The uniform performance im-
provement across all four devices suggests a nice property in
the deep learning that it helps improving the best performed de-
vice as much as it helps the least well performed device.

We further compared the performance gap across different
devices on the CD-DNN-HMM. On the VS task, the WERs of
the selected four devices range from 19% to 23% or 20% rel-
ative WER difference between the best and the least well per-
formed device. Similar trend was observed in the SMD task.
The performance variance across devices appears to be as large
as in the GMM.

To this end, we think the channel robustness still exists as a
distinct robustness issue and it remains to be further researched
in the deep learning acoustic model. Besides the traditional
channel normalization methodologies, developing channel nor-
malization technologies within the deep learning framework is
promising given the deep learning capability and the deep neu-
ral network capacity.

4.3. Varied Speaking Rate

Speaking rate variation is known to affect the speech in-
telligibility and degrade the speech recognition performance
especially under the mismatched training and testing condi-
tion [11, 12, 13]. In the mobile speech recognition applica-
tions, the speaking rate varies largely depending on the different
speakers, speaking mode, and speaking styles. This requires the
acoustic model to gracefully handle speech with varied speak-
ing rate. We would like to find out how the DNN model per-
forms on varying speaking rate compared to the GMM.

Figure 5 and Figure 6 illustrate the performance compar-
ison across different speaking rate for the VS and SMD task.
Here the speaking rate was measured by the number of phones
per second. We have also adopted some of its variations such
as the number of vowels per second or the normalized speaking
rate by taking into account the average duration for different
phonemes in this study. Similar performance pattern with re-
spect to the speaking rate was observed. Therefore, we simply

1897

Phone Discrimination

0
1
2
3
4
5
6
7
8
9
10

14

22

30

38

46

54

-5 0 5 10 15 20 25 30 35 40

H
ist

og
ra

m
 (%

)

W
ER

 (%
)

SNR (dB)

Data Dist.(VS)
GMM-HMM (VS)
CD-DNN-HMM (VS)

Figure 2: Performance comparison of CD-GMM-HMM and
CD-DNN-HMM at different SNR levels for the VS task.

0
1
2
3
4
5
6
7
8
9
10

10

14

18

22

26

30

-5 0 5 10 15 20 25 30 35 40

H
ist

og
ra

m
 (%

)

W
ER

 (%
)

SNR (dB)

Data Dist (SMD).
GMM-HMM (SMD)
CD-DNN-HMM (SMD)

Figure 3: Performance comparison of the CD-GMM-HMM and
CD-DNN-HMM at different SNR levels for the SMD task.

The speech recognition performance of the DNN drops sig-
nificantly as the noise level increases within the normal range
for the mobile speech application. This suggests the noise
robustness remains as an important research area. Speech
enhancement, noise robust acoustic features, or other multi-
condition learning technologies need to be explored to bridge
the performance gap and further improve the overall perfor-
mance of the deep learning based acoustic model.

4.2. Channel Mismatch

The channel mismatch is another major source of the speech
recognition performance degradation. The channel robustness
issue is a traditional speech recognition robustness topic which
has been researched for many years. It is also particularly im-
portant for the mobile speech application since typically the mo-
bile application serves a large number of different devices from
many different phone manufactures. The channel robustness is
an indispensable feature for a successful mobile speech recog-
nition system.

In this session, we discuss whether the channel mismatch
issue still exists as a distinct speech recognition robustness
problem or it has been largely resolved with the invariant and se-
lective feature learning in the deep learning technology. Specif-
ically, we compared the performance of the CD-GMM-HMM
and CD-DNN-HMM on four different mobile devices from dif-
ferent manufactures with the comparison results summarized in

0

5

10

15

20

25

30

11

15

19

23

27

31

35

39

A B C D
Device Type

H
ist

og
ra

m
 (%

)

W
ER

 (%
)

Data Dist. (SMD)
Data Dist. (VS)
GMM SMD)
DNN (SMD)
GMM (VS)

Figure 4: Performance comparison of CD-GMM-HMM and
CD-DNN-HMM models on four different devices.

Figure 4.
In the CD-DNN-HMM, we observed consistent word er-

ror rate reduction for all four selected devices both on the VS
and SMD tasks comparing to the CD-GMM-HMM. The DNN
yields nearly uniform performance gain on all four devices and
the pattern is shared between the VS and SMD tasks. This once
again verifies that the DNN is a generally more discriminative
model compared to the GMM. The uniform performance im-
provement across all four devices suggests a nice property in
the deep learning that it helps improving the best performed de-
vice as much as it helps the least well performed device.

We further compared the performance gap across different
devices on the CD-DNN-HMM. On the VS task, the WERs of
the selected four devices range from 19% to 23% or 20% rel-
ative WER difference between the best and the least well per-
formed device. Similar trend was observed in the SMD task.
The performance variance across devices appears to be as large
as in the GMM.

To this end, we think the channel robustness still exists as a
distinct robustness issue and it remains to be further researched
in the deep learning acoustic model. Besides the traditional
channel normalization methodologies, developing channel nor-
malization technologies within the deep learning framework is
promising given the deep learning capability and the deep neu-
ral network capacity.

4.3. Varied Speaking Rate

Speaking rate variation is known to affect the speech in-
telligibility and degrade the speech recognition performance
especially under the mismatched training and testing condi-
tion [11, 12, 13]. In the mobile speech recognition applica-
tions, the speaking rate varies largely depending on the different
speakers, speaking mode, and speaking styles. This requires the
acoustic model to gracefully handle speech with varied speak-
ing rate. We would like to find out how the DNN model per-
forms on varying speaking rate compared to the GMM.

Figure 5 and Figure 6 illustrate the performance compar-
ison across different speaking rate for the VS and SMD task.
Here the speaking rate was measured by the number of phones
per second. We have also adopted some of its variations such
as the number of vowels per second or the normalized speaking
rate by taking into account the average duration for different
phonemes in this study. Similar performance pattern with re-
spect to the speaking rate was observed. Therefore, we simply

1897

Channel Mismatch

0

4

8

12

16

20

24

28

15

25

35

45

55

5 7 9 11 13 15 17

H
ist

og
ra

m
 (%

)

W
ER

 (%
)

Speaking Rate (# of Phones per Second)

Data Dist. (VS)
GMM-HMM (VS)
CD-DNN-HMM (VS)

Figure 5: Performance comparison of the CD-GMM-HMM and
the CD-DNN-HMM at different speaking rate for the VS task.

0

4

8

12

16

20

24

28

12

17

22

27

5 7 9 11 13 15 17

H
ist

og
ra

m
 (%

)

W
ER

 (%
)

Speaking Rate (# of Phones per Sec.)

Data Dist. (SMD)
GMM-HMM (SMD)
CD-DNN-HMM (SMD)

Figure 6: Performance comparison of the CD-GMM-HMM and
the CD-DNN-HMM at different speaking rate for the SMD task.

adopted the number of phones per second as a measure for the
speaking rate in this paper.

We found that the CD-DNN-HMM consistently outper-
forms the CD-GMM-HMM with almost uniform performance
gain across all speaking rate. This again proves that the DNN
model is a better discriminative model. In comparing the per-
formance of the CD-DNN-HMM across different speaking rate,
we observe the “U”-shaped pattern for both VS and SMD. On
the VS, the speaking rate “sweet spot” is around 10 to 12 phones
per second. When the speaking rate deviates 30% from the
“sweet spot” (either speeds up or slows down), 30% relative
word error rate increase is observed.

In the shared acoustic model scenario for the voice search
and short message dictation, the speaking rate varies both within
and between the two tasks. They have different “sweet spots”
and also exhibit slightly different error pattern with respect to
the speaking rate change. On the SMD, we observe 15% relative
word error rate increase when the speaking rate deviates 30%
from the “sweet spot”.

Extremely fast or slow speech may result in speech recog-
nition performance degradation due to the following reasons:
First, it may change the acoustic score dynamic range. Sec-
ond, the fixed frame rate, frame length, and context window size
may be inadequate to capture the dynamics in transient speech
events for fast or slow speech and therefore result in sub-optimal
modeling. Third, the extremely fast or slow speech may result
in slight formant shift due to the human vocal instrumentation

0

4

8

12

16

20

24

28

13

15

17

19

21

23

1 3 5 7 9 11 13

H
ist

og
ra

m
 (%

)

W
ER

 (%
)

Speaking Rate (# of Phones per Sec.)

Data Dist. (SMD)
CD-DNN-HMM (SMD, LM=13.25)
CD-DNN-HMM (SMD, LM=11.25)

Figure 7: Performance comparison of the CD-GMM-HMM and
the CD-DNN-HMM at different speaking rate for the SMD task.

limitation. Last, other phonological changes such as the phone
deletion and the fragmented word may accompany with the ex-
tremely fast speech.

We conducted an initial experiment to investigate the effect
of adjusting the LM interpolation weight for the extremely fast
or slow speech on the SMD task. As shown in Figure 7, de-
creasing the LM interpolation weight can yield moderate WER
reduction for the fast speech and result in small performance
degradation for the slow speech. Overall, the speaking rate
“sweet” spot shifts slightly to the faster speech region. This ver-
ified our hypothesis on the effect of the acoustic score dynamic
range change on the ASR performance of the extremely fast or
slow speech. Nevertheless, the small performance change sug-
gests that the speaking rate compensation problem is a modeling
issue requiring the model level solution.

The large performance gap across different speaking rate
in the CD-DNN-HMM suggests it is possible to further im-
prove the DNN model performance via the effective speaking
rate compensation methodologies.

5. Conclusion
In summary, we conducted an analytic error analysis on a pair
of GMM and DNN models using significant amount of ana-
lytic material on the mobile VS/SMD task. Our study suggests
that the DNN acoustic model is a generally more discriminative
model. The DNN can significantly improve the phone discrim-
ination with the phone error rate reduction ranging from 15.6%
to 39.8%. It is particularly good at discriminating certain con-
sonants, which are found to be “hard” in the GMM.

On the robustness side, the DNN outperforms the GMM
at all SNR levels, across all devices, and under all speaking
rate with nearly uniform improvement under different condi-
tions. Nevertheless, the performance gap with respect to dif-
ferent SNR levels, distinct channels, and varied speech rate re-
mains large. For example, in CD-DNN-HMM, we observed
1∼2% performance degradation per 1dB SNR drop; 20∼25%
relative WER gap between the best and least well performed
devices; 15∼30% WER increase when the speaking rate speeds
up or slows down by 30% from the “sweet” spot.

Therefore, we conclude that robustness remains as a major
challenge in the deep learning acoustic model. Speech enhance-
ment, channel normalization, and speaking rate compensation
are important areas to further improve the DNN model accu-
racy.

1898

Speaking Rate

[14]17Kai	Yu.	Structured	DL.	MLSLP	16

Acoustic Variabilities for AM

• Speech variability – desired
– Inherent	variability	related	to	what	a	speaker	says	

• Acoustic context variability – unwanted
– Speaker: male/female, accent, speaking rate, etc.
– Emotion: happy, fear, neutral, etc.
– Spontaneity: read, natural, spontaneous, etc.
– Environment: office, car, street, airport, etc.
– Channel: mobile, microphone, bluetooth, etc.

18Kai	Yu.	Structured	DL.	MLSLP	16

Linguistic Variabilities for LM

• Word variability – desired
– Inherent	variability	related	to	what	a	speaker	says	

• Linguistic context variability – unwanted
– Domain: news, science, novel, etc.
– Topic: politics, sports, family, technology, etc.
– Speaker role: child, parents, professional, etc.
– Emotion: sad, happy, disgust, etc.
– Dialogue: conversation history, search record, etc.

19Kai	Yu.	Structured	DL.	MLSLP	16

Context and Homogeneity
• Effect

– Non-Targeted but Influential factors

• Granularity
– Different from the primary variability
– Usually beyond local estimation

• Prior knowledge is a special kind of context
– E.g. telephone number constraint, etc.

• Context is also structured
– E.g. environment, speaker, channel have intersection

20Kai	Yu.	Structured	DL.	MLSLP	16

M

speaker 1[] speaker 2[] speaker N[]

Context and Homogeneity

• Data	within	a	homogeneous block	share	the	same
context (concrete specific statistical property)

• Homogeneous block is dependent on context
• How to deal with non-homogeneity?

– Deep learning + big data?

Advanced Techniques in Adaptive Training of HMMs: K. Yu

Acoustic Mismatch Between Training And Test Data –
Adaptation

• Homogeneity Assumption: O = {O(1), · · · ,O(S)}

• Given well built HMMs (eg. Speaker Independent (SI) model)

• Adapt the model to each data block using supervision data

– Supervised adaptation - supervision data available
– Unsupervised adaptation - no supervision, self-supervision employed

SI Model

Testset−specific DataSI Training Data

Data
TestAdaptation Adapted Model

Cambridge University
Engineering Department

Presentation for Academic Visit in Dec. 2007 3
21Kai	Yu.	Structured	DL.	MLSLP	16

Multi-style	Training	with Big Data

• Train models on data with large variability as if they are
“homogeneous”, i.e. ignore mismatch inside training data

• Rely on good model and big data coverage
• Big data ≠	rich context
• Implicit context modelling has limitation
• Explicit modelling: adaptation and adaptive training

Multi-style	training

M

speaker 1[] speaker 2[] speaker N[]

0
1
2
3
4
5
6
7
8
9
10

14

22

30

38

46

54

-5 0 5 10 15 20 25 30 35 40

H
ist

og
ra

m
 (%

)

W
ER

 (%
)

SNR (dB)

Data Dist.(VS)
GMM-HMM (VS)
CD-DNN-HMM (VS)

Figure 2: Performance comparison of CD-GMM-HMM and
CD-DNN-HMM at different SNR levels for the VS task.

0
1
2
3
4
5
6
7
8
9
10

10

14

18

22

26

30

-5 0 5 10 15 20 25 30 35 40

H
ist

og
ra

m
 (%

)

W
ER

 (%
)

SNR (dB)

Data Dist (SMD).
GMM-HMM (SMD)
CD-DNN-HMM (SMD)

Figure 3: Performance comparison of the CD-GMM-HMM and
CD-DNN-HMM at different SNR levels for the SMD task.

The speech recognition performance of the DNN drops sig-
nificantly as the noise level increases within the normal range
for the mobile speech application. This suggests the noise
robustness remains as an important research area. Speech
enhancement, noise robust acoustic features, or other multi-
condition learning technologies need to be explored to bridge
the performance gap and further improve the overall perfor-
mance of the deep learning based acoustic model.

4.2. Channel Mismatch

The channel mismatch is another major source of the speech
recognition performance degradation. The channel robustness
issue is a traditional speech recognition robustness topic which
has been researched for many years. It is also particularly im-
portant for the mobile speech application since typically the mo-
bile application serves a large number of different devices from
many different phone manufactures. The channel robustness is
an indispensable feature for a successful mobile speech recog-
nition system.

In this session, we discuss whether the channel mismatch
issue still exists as a distinct speech recognition robustness
problem or it has been largely resolved with the invariant and se-
lective feature learning in the deep learning technology. Specif-
ically, we compared the performance of the CD-GMM-HMM
and CD-DNN-HMM on four different mobile devices from dif-
ferent manufactures with the comparison results summarized in

0

5

10

15

20

25

30

11

15

19

23

27

31

35

39

A B C D
Device Type

H
ist

og
ra

m
 (%

)

W
ER

 (%
)

Data Dist. (SMD)
Data Dist. (VS)
GMM SMD)
DNN (SMD)
GMM (VS)

Figure 4: Performance comparison of CD-GMM-HMM and
CD-DNN-HMM models on four different devices.

Figure 4.
In the CD-DNN-HMM, we observed consistent word er-

ror rate reduction for all four selected devices both on the VS
and SMD tasks comparing to the CD-GMM-HMM. The DNN
yields nearly uniform performance gain on all four devices and
the pattern is shared between the VS and SMD tasks. This once
again verifies that the DNN is a generally more discriminative
model compared to the GMM. The uniform performance im-
provement across all four devices suggests a nice property in
the deep learning that it helps improving the best performed de-
vice as much as it helps the least well performed device.

We further compared the performance gap across different
devices on the CD-DNN-HMM. On the VS task, the WERs of
the selected four devices range from 19% to 23% or 20% rel-
ative WER difference between the best and the least well per-
formed device. Similar trend was observed in the SMD task.
The performance variance across devices appears to be as large
as in the GMM.

To this end, we think the channel robustness still exists as a
distinct robustness issue and it remains to be further researched
in the deep learning acoustic model. Besides the traditional
channel normalization methodologies, developing channel nor-
malization technologies within the deep learning framework is
promising given the deep learning capability and the deep neu-
ral network capacity.

4.3. Varied Speaking Rate

Speaking rate variation is known to affect the speech in-
telligibility and degrade the speech recognition performance
especially under the mismatched training and testing condi-
tion [11, 12, 13]. In the mobile speech recognition applica-
tions, the speaking rate varies largely depending on the different
speakers, speaking mode, and speaking styles. This requires the
acoustic model to gracefully handle speech with varied speak-
ing rate. We would like to find out how the DNN model per-
forms on varying speaking rate compared to the GMM.

Figure 5 and Figure 6 illustrate the performance compar-
ison across different speaking rate for the VS and SMD task.
Here the speaking rate was measured by the number of phones
per second. We have also adopted some of its variations such
as the number of vowels per second or the normalized speaking
rate by taking into account the average duration for different
phonemes in this study. Similar performance pattern with re-
spect to the speaking rate was observed. Therefore, we simply

1897

[14]

22Kai	Yu.	Structured	DL.	MLSLP	16

Adaptation – No Change in Training

• Well-built	model already	exists

• Mode
– Supervised: annotations are available
– Unsupervised: only raw data is available

All Training Data Testset-specific Data

Test
DataHMM Model Adaptation Adapted Model

23Kai	Yu.	Structured	DL.	MLSLP	16

Adaptive	Training	– Explicit	Modelling	of	Context

• Speech and non-speech variability separately
modelled

M

speaker 1 [] speaker 2[] speaker N[]all speech segments from

Canonical Model

()
T (1)

()
T (2)

()
T (N)

Transforms

Training	data	is	split	
homogeneous	blocks

G
d

=

X

t,m

�

m

(t)

�

(m)

dd

⇠(m)

⇣

⇠(m)

⌘>

ˆw
d

= G�1

d

k
d

k
d

=

X

t,m

�

m

(t)o

t,d

�

(m)

dd

⇠(m)

ˆ⌃(sm)

= C(s)⌃(m)

⇣

C(s)
⌘>

logN
⇣

o
t

;µ(m)

,

ˆ⌃(sm)

⌘

= log

✓

N
✓

⇣

C(s)
⌘�1

o
t

;

⇣

C(s)
⌘�1

µ(m)

,⌃(m)

◆◆

� log |C(s)|

Slide 19

ˆµ(sm)

= A(s)

↵

µ(m) � b(s)

↵

ˆ⌃(sm)

= A(s)

↵

⌃(m)

⇣

A(s)

↵

⌘>

ˆo(s)

t

=

⇣

A(s)

↵

⌘�1

o
t

+

⇣

A(s)

↵

⌘�1

b(s)

↵

= A(s)o
t

+ b(s)

= W(s)⇣
t

logN
⇣

o
t

;

ˆµ(sm)

,

ˆ⌃(sm)

⌘

= log

⇣

N
⇣

ˆo(s)

t

;µ(m)

,⌃(m)

⌘⌘

+ log |A(s)|

Q
⇣

T ;

ˆT ,M
⌘

= �1

2

X

t,m

�

m

(t)

⇢

⇣

W⇣
t

� µ(m)

⌘> ⇣
⌃(m)

⌘�1

⇣

W⇣
t

� µ(m)

⌘

� log

�

|A|2
�

�

Slide 21

ˆµ(sm)

= A(srm)µ(m)

+ b(srm)

ˆo(srm)

t

= A(srm)o
t

+ b(srm)

Slide 25

R(D

2

+D)

Slide 26

ˆµ(s)

= A(s)µ+ b(s)

ˆµ(s)

=

X

c

�

(s)

c

µ
c

= M�(s)

Slide 29

�

aux

m

(t) = �

m

(t)c(w(m))

Slide 31

ˆµ(sm)

= A(s)

X

p

�

(s)

p

µ(m)

p

!

+ b(s)

Slide 34

O =

n

O(1)

, · · · ,O(S)

o

H =

n

H(1)

, · · · ,H(S)

o

Slide 35

T =

n

T (1)

, · · · , T (S)

o

Slide 37

ˆoCMN(s)
t

= o(s)

t

� ¯o(s)

= o(s)

t

� 1

T

T

X

i=1

o(s)

i

2

Acoustic Modelling as an
Example

24Kai	Yu.	Structured	DL.	MLSLP	16

GMM-HMM Adaptive	Training	Techniques

• Feature	Normalization
– Cepstral	Mean	and	Variance	Normalization	
– Gaussianization
– Vocal	Tract	Length	Normalization

• Model	Adaptation
– Linear transform based	(MLLR, CMLLR etc.)
– Cluster adaptive training

[15,16,17,18,19,20,21]

25Kai	Yu.	Structured	DL.	MLSLP	16

Feature Normalization	[15][16]
• Simplest	form:	CMN/CVN

– Homogeneous block varies from utterance to
speaker or corpus

• Comparison to global CMN/CVN
– Each	homogeneous	block	has	different feature	
transforms

– Normalize	training	and	test	data	separately

G
d

=

X

t,m

�

m

(t)

�

(m)

dd

⇠(m)

⇣

⇠(m)

⌘>

ˆw
d

= G�1

d

k
d

k
d

=

X

t,m

�

m

(t)o

t,d

�

(m)

dd

⇠(m)

ˆ⌃(sm)

= C(s)⌃(m)

⇣

C(s)
⌘>

logN
⇣

o
t

;µ(m)

,

ˆ⌃(sm)

⌘

= log

✓

N
✓

⇣

C(s)
⌘�1

o
t

;

⇣

C(s)
⌘�1

µ(m)

,⌃(m)

◆◆

� log |C(s)|

Slide 19

ˆµ(sm)

= A(s)

↵

µ(m) � b(s)

↵

ˆ⌃(sm)

= A(s)

↵

⌃(m)

⇣

A(s)

↵

⌘>

ˆo(s)

t

=

⇣

A(s)

↵

⌘�1

o
t

+

⇣

A(s)

↵

⌘�1

b(s)

↵

= A(s)o
t

+ b(s)

= W(s)⇣
t

logN
⇣

o
t

;

ˆµ(sm)

,

ˆ⌃(sm)

⌘

= log

⇣

N
⇣

ˆo(s)

t

;µ(m)

,⌃(m)

⌘⌘

+ log |A(s)|

Q
⇣

T ;

ˆT ,M
⌘

= �1

2

X

t,m

�

m

(t)

⇢

⇣

W⇣
t

� µ(m)

⌘> ⇣
⌃(m)

⌘�1

⇣

W⇣
t

� µ(m)

⌘

� log

�

|A|2
�

�

Slide 21

ˆµ(sm)

= A(srm)µ(m)

+ b(srm)

ˆo(srm)

t

= A(srm)o
t

+ b(srm)

Slide 25

R(D

2

+D)

Slide 26

ˆµ(s)

= A(s)µ+ b(s)

ˆµ(s)

=

X

c

�

(s)

c

µ
c

= M�(s)

Slide 29

�

aux

m

(t) = �

m

(t)c(w(m))

Slide 31

ˆµ(sm)

= A(s)

X

p

�

(s)

p

µ(m)

p

!

+ b(s)

Slide 34

O =

n

O(1)

, · · · ,O(S)

o

H =

n

H(1)

, · · · ,H(S)

o

Slide 35

T =

n

T (1)

, · · · , T (S)

o

Slide 37

ˆoCMN(s)
t

= o(s)

t

� ¯o(s)

= o(s)

t

� 1

T

T

X

i=1

o(s)

i

2

ô

CVN(s)

t,d

= ô

CMN(s)

t,d

/

q

�

(s)

dd

Slide 38

ô

(s)

d

= �

�1

0

@

Z

o

(s)
d

�1

N

(s)
d

X

n=1

c

dns

N
⇣

x;µ

(dns)

,�

(dns)

⌘

dx

1

A

Slide 40

M
ML

:

= M
W(s)

ML

:

=

�

I 0
�

W(s)

ML

= argmax

W

n

log p

⇣

O(s)|H(s)

;W,M
ML

⌘o

M
ML

= argmax

M

(

S

X

s=1

log p

⇣

O(s)|H(s)

;W(s)

ML

,M
⌘

)

Slide 41

ˆµ(sm)

= A(srm)µ(m)

+ b(srm)

= W(srm)⇠(m)

Q
⇣

M;

ˆM, T̂
⌘

= �1

2

X

s,m,t

�

m

(t)

⇢

log |⌃(m)|+
⇣

o(s)

t

�W(srm)⇠(m)

⌘> ⇣

⌃(m)

⌘�1

⇣

o(s)

t

�W(srm)⇠(m)

⌘

�

Slide 42

ˆo(srm)

t

= A(srm)o
t

+ b(srm)

= W(srm)⇣
t

Q
⇣

M;

ˆM, T̂
⌘

= �1

2

X

s,m,t

�

m

(t)

⇢

log |⌃(m)|+
⇣

ˆo(srm)

t

� µ(m)

⌘> ⇣

⌃(m)

⌘�1

⇣

ˆo(srm)

t

� µ(m)

⌘

�

ˆµ(m)

=

P

s,t

�

m

(t)o(srm)

t

P

s,t

�

m

(t)

ˆ⌃(m)

= diag

0

B

@

P

s,t

�

m

(t)

⇣

ˆo(srm)

t

� ˆµ(m)

⌘⇣

ˆo(srm)

t

� ˆµ(m)

⌘>

P

s,t

�

m

(t)

1

C

A

Slide 43

M(m)

=

h

µ(m)

1

, · · · ,µ(m)

P

i

�(sr)

=

h

�

(sr)

1

, · · · ,�(sr)

P

i>

ˆµ(s)

=

X

c

�

(s)

c

µ
c

= M�(s)

Q
⇣

M;

ˆM, T̂
⌘

= �1

2

X

s,m,t

�

m

(t)

⇢

log |⌃(m)|+
⇣

o
t

�M(m)�(srm)

⌘> ⇣

⌃(m)

⌘�1

⇣

o
t

�M(m)�(srm)

⌘

�

Slide 44

G(m)

=

X

s,t

�

m

(t)�(srm)

⇣

�(srm)

⌘>

⇣

ˆM(m)

⌘>
=

⇣

G(m)

⌘�1

K(m)

K(m)

=

X

s,t

�

m

(t)�(srm)o>
t

3

26Kai	Yu.	Structured	DL.	MLSLP	16

Part	III
Structured Deep Learning for

Context Awareness

Context-aware Deep Learning
• Re-training under context – Implicitmodelling

– Additional Regularization
• Conservative training [22]
• KL-divergence regularization [23]

– Selective update
• Only update input/output layer [24]
• Update weights connected to maximum variance nodes [25]

• Structured deep learning – Explicitmodelling
– Multi-view input with context representation
– Multi-task output with context target or constraint
– Structured model parameter to reflect context

Basic Idea: Let the updated model be close to the original well-
trained model

28Kai	Yu.	Structured	DL.	MLSLP	16

Structured Input – Multi-view Techniques
• External context embedding as input

– Speaker feature: i-vector [26], i-vector for LSTM [31]
– Environment-feature or combined:noise-energy [27], combined [28]
– Structured VAD [32]

• Internal trainable context embedding

– Speaker-code [29]
– Paragraph-vector [30]

Basic Idea: Estimate context representation using an external model
and augment feature with the context representation

Basic Idea: Context representation is estimated using the same model
for speech recognition

29Kai	Yu.	Structured	DL.	MLSLP	16

i-Vector-based	DNN	Adaptation[26,33]

• i-Vector encapsulates all relevant information about a speaker’s identity in a low-
dimensional vector

• i-Vector extraction is independent of DNN training
• Speaker-level i-Vector is fed into DNN together with frame-level features as

augmented input features
• Noise-vector	(energy)	can	also	be	used	in	the	framework [27]

Crit. Sys Hub5 RT03-
Fsh

RT-03-
Swb

CE
DNN 16.1 18.9 29.0

+iVec 13.9 16.7 25.8

Sequence
DNN 14.1 16.9 26.5

+iVec 12.4 15.0 24.0

Conversational Telephone Speech (English)

30Kai	Yu.	Structured	DL.	MLSLP	16

Factored	DNN	Adaptation	[28]

• Factors are estimated separately from DNN
• Factor vectors fed to the	softmax output	layer
• Loading matrix (weights connected to acoustic

factor vectors) need to be estimated using
standard BP

to prior work in Section 5, and then conclude the study and
propose the future research direction in Section 6.

2. CD-DNN-HMM

A deep neural network (DNN) can be considered as a conventional
multi-layer perceptron (MLP) with many hidden layers (thus deep)
as illustrated in the left side of Figure 1, in which the input and
output of the DNN are denoted as 𝑥 and 𝑜, respectively. The three
major components contributing to the excellent performance of
CD-DNN-HMM are: modeling senones directly even though there
might be thousands or even tens of thousands of senones; using
DNNs instead of shallow MLPs; and using a long context window
of frames as the input.

Denote the input vector at layer l as 𝑣௟ (with 𝑣଴ = 𝑥) , the

weight matrix as 𝑊௟, and bias vector as 𝑎௟. Then for a DNN with L
hidden layers, the output of the l-th hidden layer is

v୪ାଵ = σ ቀz൫v୪൯ቁ , 0 ≤ l < L (1)

where 𝑧൫v୪൯ = 𝑊௟v୪ + 𝑎௟ and σ(x) = 1 (1 + e୶)⁄ is the sigmoid
function applied element-wise. The posterior probability is

𝑝௢|௫(𝑜 = 𝑠|𝑥) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧(𝑣௅)), (2)

where 𝑠 is the tied triphone states (also known as senones).
We compute the HMM’s state emission probability density

function 𝑝௫|௢(𝑥|𝑜 = 𝑠) by converting the state posterior
probability 𝑝௢|௫(𝑜 = 𝑠|𝑥) to

𝑝௫|௢(𝑥|𝑜 = 𝑠) =
𝑝௢|௫(𝑜 = 𝑠|𝑥)
𝑝௢(𝑜 = 𝑠)

∙ 𝑝(𝑥), (3)

where 𝑝௢(𝑜 = 𝑠) is the prior probability of state 𝑠 , and 𝑝(𝑥) is
independent of state and can be dropped during evaluation.

3. ACOUSTIC FACTORIZATION FOR DNN

Denote 𝑟 = 𝑧(𝑣௅) as the output vector right before the softmax
activation in Eq-(2). Now we consider the case that the input
feature, x, has been distorted by environment factors to become y.
Merging the layer-by-layer z and σ functions, we can denote
𝑟 = 𝑅(𝑦) , where 𝑅(∙) represents the overall nonlinear function in
a DNN. In this study, to adapt an existing DNN to a new
environment, we propose to compensate the vector 𝑟 by removing
those unwanted parts in the network outputs caused by acoustic
factors, as shown in Figure 1. Specifically, the modified vector 𝑟ᇱis
obtained by

𝑟ᇱ = 𝑅(𝑦) + ෍𝑄௡𝑓௡,
ே

௡ୀଵ

 (4)

where 𝑓௡ is the underlying n-th acoustic factor and 𝑄௡ is the
corresponding loading matrix. Then 𝑟ᇱ is used to calculate the
posterior probability as

𝑝௢|௫(𝑜 = 𝑠|𝑥) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑟′). (5)

When adapting the existing DNN to a new environment, we extract
the factors [𝑓ଵ, ……𝑓ே] from adaptation utterances, and then train
the loading matrixes [𝑄ଵ, ……𝑄ே] using standard back-
propagation. Then this adapted DNN can be used to decode the
utterance from the same environment.

In the following, we examine what acoustic factors should be
used for adaption and link our proposed method with well-
established technologies from different perspectives.

...

...

...

...

...

...

...x

Input Layer

Output Layer
senones

Data

Training or Testing Samples

...
Factor 1 (f1)

...
Factor N (fN)

…...

WL Q1 QN

r

Factor 1
feature

extraction

Factor N
feature

extraction

x

vL

o

Text

Many
Hidden
Layers

Figure 1. The flow chart of factorized adaptation for a DNN.

3.1. From the view of joint factor analysis

Joint factor analysis (JFA) [26] is a very successful technology in
speaker recognition by denoting speaker-dependent mean
supervector M as

𝑀 = 𝑚 + 𝐴𝑎 + 𝐵𝑏 + 𝐶𝑐, (6)

where m is the speaker- and session-independent mean
supervector, A and C define a speaker subspace (eigenvoice matrix
and diagonal residual, respectively), and B defines a session
subspace (eigenchannel matrix). The speaker, speaker-specific
residual and session factors are a, c, and b, respectively.

Similarly, when considering nuisance factors that affect DNN’s

prediction, we can use noise, channel, and speaker as factors in Eq-
(4), and relate the factor-independent 𝑟ᇱ and dependent vectors
R(y) in Eq-(4) to the speaker/session- independent and dependent
mean supervectors m and M, respectively. While sharing the
concept of decomposing speech into several factors with JFA, our
method takes a fundamentally different approach for the purpose of
acoustic model adaptation. This study focuses on estimating the
“compensation” matrix using the discriminative training criterion
given the pre-determined acoustic factors, whereas JFA jointly
estimates the JFA matrices and the speaker/session factors. In our
experiments, we refer to the factorized adaptation method
considering any environment-related factors (noise, channel, or
speaker) as JFA-style adaption. We next introduce a second
method that considers additional inputs which are derived from the
view of vector Taylor series expansion.

3.2. From the view of vector Taylor series expansion

Vector Taylor series (VTS) expansion is a very successful noise
robust method [27][28] which uses a parsimonious nonlinear
physical model to describe the environmental distortion and uses
the VTS approximation technique to find closed-form HMM

Factor vector estimation
• Joint factor analysis (JFA) [34]
• Vector Taylor Series (VTS) [35,36]

Aurora 4. Same Microphone

(a) Test set B – same microphone

(b) Test set D – microphone mismatch

Figure 2. Compare JFA- and VTS-style methods with fDLR for
DNN adaptation on Aurora 4. The averaged WERs across 6 noise
sub test sets after adaptation for Test set B (a) and Test set D (b).
“0” for the number of adaptation utterances means the un-adapted
clean-trained DNN model.

5. RELATION TO PRIOR WORK

As discussed in the introduction section, most existing neural
network adaptation technologies only adapt or add the network
weights without differentiating the underlying factors that cause
the mismatch between training and testing [11]-[20]. The proposed
method is fundamentally different from these methods by taking
into account the underlying factors that contribute to the distorted
speech signal.

The most related work to our proposed method is the speaker
code method [21] in which the speaker factor is addressed by
training speaker-dependent codes. However, the detail is very
different. The speaker code method needs to add several layers to
connect the speaker code and the input feature to the bottom
hidden layer of the original DNN. These new layers are trained
with all the training data and shared by all speakers, while only the
speaker code, a vector, is speaker dependent. This somehow
restricts the scalability when more adaptation utterances can be
used. As shown in [21], the improvement got saturated with 7
adaptation utterances, and there was only very small WER
difference between using 2 and 7 adaptation utterances. Our
method differs from the speaker code method in these aspects: 1)
We use factor-dependent matrices, as opposed to a speaker-
dependent vector in the speaker code method; 2) We directly
modify the weight matrixes connecting the output layer and the
factors for every environment, while the speaker code method
needs to train speaker-specific codes and several additional DNN

layers connected to the bottom layer of the original network; 3) As
shown in Figure 2, our proposed method doesn’t have the fast
saturation issue observed with the speaker code method.

As described in Section 3.1 and 3.2, we can view our
proposed method from the perspectives of JFA [26] and VTS
[27][28]. Different from JFA which works on the mean
supervector of GMM and VTS which works on either input
features or model parameters of GMM, our proposed method
modifies the output vector right before the softmax function in a
DNN by adding the impacts from multiple acoustic factors.

It should be noted that although we are using the term of JFA-
and VTS-style to describe our methods, it doesn’t mean we strictly
follow the formulation of JFA or VTS in this initial study. For
example, speaker factor in JFA is not used in JFA-style in this
study although we plan to model speaker factor in the future.

6. CONCLUSIONS AND FUTURE WORKS

In this paper, we have proposed a novel factorized adaptation
method to adapt a DNN with only limited number of parameters by
taking into account the underlying factors that contribute to the
distorted speech signal. The proposed has two variants of
implementation: the JFA-style and the VTS-style adaption
methods. In the JFA-style adaptation, only noise is used as a factor
while both noise and distorted speech are used as factors in the
VTS-style adaptation. Evaluated on Aurora 4 test set B where the
speech is only distorted by noise, the VTS-style adaptation gets
19.0%, 15.8%, 12.3%, and 3.4% relative WER reduction (WERR)
with 20, 10, 5, and 2 adaptation utterances, respectively. It is
consistently better than fDLR and the JFA-style approach in all
cases. On test set D where the speech is distorted by noise and
channel, the VTS-style approach behaves similarly as fDLR while
the JFA-approach is best when only 2 and 5 utterances are used.
Despite some imprecise assumption when deriving from the
perspective of VTS, overall the VTS-style performs the best
among the three methods, suggesting its great potential advantage
when more precise modeling is used.

This paper presents our initial study of factor adaption method
for a DNN. We are now working on several ways to improve the
proposed method. First, as shown in Section 4, the VTS-style
adaptation method can get only 10.6% WERR with 20 adaptation
utterances on test set D, compared to 19.0% on test set B. In
addition to noise distortion as in test set B, there is also channel
distortion that needs to be addressed in test set D while our current
VTS-style method doesn’t include a channel factor. We expect to
get further improvement by including channel factors into the
formulation. Second, the VTS-style adaptation in Eq-(10) is
approximated by assuming the gradient 𝜕𝑅 𝜕𝑦⁄ is constant in Eq-
(9). While significant WER improvement has been established
under this assumption, we expect to get better performance with
precise modeling in Eq-(9). This can be achieved by calculating the
gradient using back-propagation during training and testing.
Another way to avoid the gradient term in Eq-(9) is to apply VTS-
style adaptation at the DNN input layer instead of the output layer,
using Eq-(8) with the factor loading matrixes directly. fDLR can be
considered as a special case that only the matrix related with the
distorted input is used. Last, we will examine the possibility of
using i-vector [32] to model total variability instead of using
individual factors.

ACKNOWLEDGEMENT
We would like to thank Dr. Mike Seltzer in Microsoft for
providing the baseline setup of Aurora 4.

19

21

23

25

0 2 5 10 20

W
ER

 (%
)

Number of adaptation utterances

FDLR JFA-style VTS-style

36
37
38
39
40
41
42

0 2 5 10 20

W
ER

 (%
)

Number of adaptation utterances

FDLR JFA-style VTS-style

(a) Test set B – same microphone

(b) Test set D – microphone mismatch

Figure 2. Compare JFA- and VTS-style methods with fDLR for
DNN adaptation on Aurora 4. The averaged WERs across 6 noise
sub test sets after adaptation for Test set B (a) and Test set D (b).
“0” for the number of adaptation utterances means the un-adapted
clean-trained DNN model.

5. RELATION TO PRIOR WORK

As discussed in the introduction section, most existing neural
network adaptation technologies only adapt or add the network
weights without differentiating the underlying factors that cause
the mismatch between training and testing [11]-[20]. The proposed
method is fundamentally different from these methods by taking
into account the underlying factors that contribute to the distorted
speech signal.

The most related work to our proposed method is the speaker
code method [21] in which the speaker factor is addressed by
training speaker-dependent codes. However, the detail is very
different. The speaker code method needs to add several layers to
connect the speaker code and the input feature to the bottom
hidden layer of the original DNN. These new layers are trained
with all the training data and shared by all speakers, while only the
speaker code, a vector, is speaker dependent. This somehow
restricts the scalability when more adaptation utterances can be
used. As shown in [21], the improvement got saturated with 7
adaptation utterances, and there was only very small WER
difference between using 2 and 7 adaptation utterances. Our
method differs from the speaker code method in these aspects: 1)
We use factor-dependent matrices, as opposed to a speaker-
dependent vector in the speaker code method; 2) We directly
modify the weight matrixes connecting the output layer and the
factors for every environment, while the speaker code method
needs to train speaker-specific codes and several additional DNN

layers connected to the bottom layer of the original network; 3) As
shown in Figure 2, our proposed method doesn’t have the fast
saturation issue observed with the speaker code method.

As described in Section 3.1 and 3.2, we can view our
proposed method from the perspectives of JFA [26] and VTS
[27][28]. Different from JFA which works on the mean
supervector of GMM and VTS which works on either input
features or model parameters of GMM, our proposed method
modifies the output vector right before the softmax function in a
DNN by adding the impacts from multiple acoustic factors.

It should be noted that although we are using the term of JFA-
and VTS-style to describe our methods, it doesn’t mean we strictly
follow the formulation of JFA or VTS in this initial study. For
example, speaker factor in JFA is not used in JFA-style in this
study although we plan to model speaker factor in the future.

6. CONCLUSIONS AND FUTURE WORKS

In this paper, we have proposed a novel factorized adaptation
method to adapt a DNN with only limited number of parameters by
taking into account the underlying factors that contribute to the
distorted speech signal. The proposed has two variants of
implementation: the JFA-style and the VTS-style adaption
methods. In the JFA-style adaptation, only noise is used as a factor
while both noise and distorted speech are used as factors in the
VTS-style adaptation. Evaluated on Aurora 4 test set B where the
speech is only distorted by noise, the VTS-style adaptation gets
19.0%, 15.8%, 12.3%, and 3.4% relative WER reduction (WERR)
with 20, 10, 5, and 2 adaptation utterances, respectively. It is
consistently better than fDLR and the JFA-style approach in all
cases. On test set D where the speech is distorted by noise and
channel, the VTS-style approach behaves similarly as fDLR while
the JFA-approach is best when only 2 and 5 utterances are used.
Despite some imprecise assumption when deriving from the
perspective of VTS, overall the VTS-style performs the best
among the three methods, suggesting its great potential advantage
when more precise modeling is used.

This paper presents our initial study of factor adaption method
for a DNN. We are now working on several ways to improve the
proposed method. First, as shown in Section 4, the VTS-style
adaptation method can get only 10.6% WERR with 20 adaptation
utterances on test set D, compared to 19.0% on test set B. In
addition to noise distortion as in test set B, there is also channel
distortion that needs to be addressed in test set D while our current
VTS-style method doesn’t include a channel factor. We expect to
get further improvement by including channel factors into the
formulation. Second, the VTS-style adaptation in Eq-(10) is
approximated by assuming the gradient 𝜕𝑅 𝜕𝑦⁄ is constant in Eq-
(9). While significant WER improvement has been established
under this assumption, we expect to get better performance with
precise modeling in Eq-(9). This can be achieved by calculating the
gradient using back-propagation during training and testing.
Another way to avoid the gradient term in Eq-(9) is to apply VTS-
style adaptation at the DNN input layer instead of the output layer,
using Eq-(8) with the factor loading matrixes directly. fDLR can be
considered as a special case that only the matrix related with the
distorted input is used. Last, we will examine the possibility of
using i-vector [32] to model total variability instead of using
individual factors.

ACKNOWLEDGEMENT
We would like to thank Dr. Mike Seltzer in Microsoft for
providing the baseline setup of Aurora 4.

19

21

23

25

0 2 5 10 20

W
ER

 (%
)

Number of adaptation utterances

FDLR JFA-style VTS-style

36
37
38
39
40
41
42

0 2 5 10 20

W
ER

 (%
)

Number of adaptation utterances

FDLR JFA-style VTS-styleAurora 4. Microphone mismatch

31Kai	Yu.	Structured	DL.	MLSLP	16

Speaker-aware	training	on	LSTM-RNNs [31]

Feature WER

FMLLR 26.0

+ i-vector
+ BSV

+ speaking	rate

24.3
25.0
25.7

Model Structure WER
LSTMP - 32.4

+ i-vector
(a) 31.1
(b) 33.2
(c) 34.5

AMI	ihm full	setAMI	ihm subset

(a) (b) (c)

32Kai	Yu.	Structured	DL.	MLSLP	16

Noise-aware VAD [32]

TEST	SET NAT-DNN NAT-LSTM NAT-CNN

SEEN	NOISE (3.52)->3.14 (3.15)->2.82 (5.05)->3.30

UNSEEN	NOISE (11.19)->8.58 (9.24)->6.72 (9.76)->7.14

33Kai	Yu.	Structured	DL.	MLSLP	16

RNN Language Model Adaptation[37]

context
vector

into the input layer. The hidden layer compresses the infor-
mation from these two inputs and computes a new representa-
tion vi−1 using a sigmoid activation to achieve non-linearity.
This is then passed to the output layer to produce normalized
RNNLM probabilities using a softmax activation, as well as re-
cursively fed back into the input layer as the “future” remaining
history to compute the LM probability for the following word
PRNN(wi+1|wi, vi−1).

Input layer

...

...
...

OOV input node

sigmoid

...
OOS output node

softmax

Hidden layer Output layer

wi−1

vi−2

vi−1

vi−1

f

PRNN(wi|wi−1, vi−2)

Figure 1: An example RNNLM with an additional input feature
vector f .

An example RNNLM architecture with an unclustered, full
output layer is shown in Figure 1. Without the feature vec-
tor f in the input layer, a standard RNNLM is constructed.
RNNLMs can be trained using an extended form of the stan-
dard back propagation algorithm, back propagation through
time (BPTT) [16], where the error is propagated through re-
current connections back for a specific number of time steps,
for example, 4 or 5 [2]. This allows RNNLMs to keep infor-
mation for several time steps in the hidden layer. To reduce the
computational cost, a shortlist [17, 18] based output layer vo-
cabulary limited to the most frequent words can be used. To re-
duce the bias to in-shortlist words during RNNLM training and
improve robustness, an additional node is added at the output
layer to model the probability mass of out-of-shortlist (OOS)
words [19, 20, 21]. RNNLMs can be trained efficiently on
GPUs using the spliced sentence bunch technique [22, 23, 24].

Informative features could be incorporated into the training
of RNNLMs for adaptation purpose. In Figure 1, feature vector
f is appended to the input layer. It will be fed into hidden layer
and output layer1 as in [25].

In state-of-the-art ASR systems, RNNLMs are often lin-
early interpolated with n-gram LMs to obtain both a good con-
text coverage and strong generalisation [1, 3, 17, 18, 19, 20].
The interpolated LM probability is given by

P (wi|hi) = λPNG(wi|hi) + (1− λ)PRNN(wi|hi) (1)

where λ is the weight of the n-gram LM PNG(·), and is kept
fixed at 0.5 in this paper. In the above interpolation, the proba-
bility mass of OOS words assigned by the RNNLM component
is re-distributed with equal probabilities among all OOS words.

1According to our experimental results, the direct connection be-
tween input (block f) and output layer is crucial when the hidden layer
size is small (e.g. < 50). When the size of hidden layer becomes large
(e.g. > 100), there is no difference between using and not using the
direct connection. In this paper, the direct connection is used.

3. Feature Based RNNLM Adaptation
In this paper, feature based RNNLM adaptation performed at
either the show or genre level is studied and compared.

As text data often contains a mix of different broad genres,
RNNLMs can be refined by making use of the genre informa-
tion. The first and most straightforward way is to further train or
fine-tune a well-trained genre-independent RNNLM on genre-
specific data to construct genre-dependent RNNLMs. At test
time, for each show, the genre-specific RNNLM is applied ac-
cording to the show’s genre label. The potential drawbacks of
this method are that multiple RNNLMs for each genre needs to
be stored and sufficient data for each genre must be obtained
for good genre-specific performance. An alternative approach
to constructing genre dependent RNNLMs is to incorporate the
genre label into the training of the RNNLM. The genre label
could simply be represented as a 1-of-k encoding feature vector
in the input layer as shown in Figure 1.

In many applications, the genre label is not known and
could be difficult to estimate. Furthermore, the genre label is
normally a coarse representation of the types of topic that might
be used. Hence, a more refined representation is preferred to
automatically derive a topic representation for each show (i.e.
document). This show-level topic representation f , will be con-
catenated with the standard input layer for RNNLM training and
testing as shown in Figure 1.

4. Learning Topic Representations
Various topic models have been proposed for topic representa-
tion of documents, including probabilistic latent semantic anal-
ysis, latent Dirichlet allocation and hierarchical Dirichlet pro-
cesses. Both PLSA and LDA use a fixed number of latent top-
ics. In contrast, HDP is able to estimate the posterior of the
number of topics during training.

Let D = {d1, ..., dN} denote the training corpus,
W = {w1, ..., wM} is all words in the vocabulary, T =
{z1, ..., zK} is the set of latent topics, and n(di, wj) is the
word count wj appearing in document di. For each docu-
ment di, a vector of posterior probabilities among topics f =
{P (z1|di), ...P (zk|di), ...P (zK |di)} is derived from the spec-
ified topic model M̂T , where each topic has a multinomial dis-
tribution over the given vocabulary.

When incorporating the feature f into RNNLM training as
shown in Figure 1, a Bayesian interpretation of the RNNLM
probability for word wi in a document d′ is given by

Prnn(wi|hi,D, d′) =

∫∫

Prnn(wi|hi, f)P (f |MT , d
′)

P (MT |D)dfdMT (2)

where P (f |MT , d
′) is the topic posterior of d′ given a model

MT trained on corpus D. The exact computation of the above
integral is intractable in general. Hence, approximations are
required to make it feasible. For topic modelMT , a MAP esti-
mate is instead used

M̂T = argmax
MT

P (MT |D) = argmax
MT

P (D|MT) (3)

when a uniform prior P (MT) is used. When a further approx-
imation is made, P (f |M̂T , d

′) ≈ δ(f − f̂
M̂T ,d′), the topic

posterior f̂
M̂T ,d′ can be obtained by maximising P (d′|M̂T).

Hence, the process in Equation (2) is be simplified as,
• maximum likelihood estimation of M̂T as in Eqn. (3);

Unsupervised Topic f extraction:
• LDA
• PLSA
• HDP

model is first trained on all 11M data, then followed by fine-
tuning on genre-specific data or the use of a genre input code.
To allow the use of show-level topic adaptation, RNNLMs were
trained from scratch with the topic representation as an addi-
tional input.

The RNNLMs had 512 node hidden layer and were trained
on a GPU with a 128 bunch size [33]. RNNLMs were used
in lattice rescoring with a 4-gram approximation as described
in [21]. All word error rate (WER) numbers are obtained us-
ing confusion network (CN) decoding [34]. For all results pre-
sented in this paper, matched pairs sentence-segment word error
(MAPSSWE) based statistical significance test was performed
at a significance level of α = 0.05.

5.2. Results for RNNLMs trained on 11M words

Table 2 gives the PPL and WERs for genre dependent
RNNLMs. From the results, the use of genre independent
RNNLMs gives a significant WER reduction of 0.7% absolute.
Genre dependent RNNLMs trained using both fine-tuning and
genre-codes both gave small statistically significant WER re-
ductions. The use of a genre-code is preferred since only one
RNNLM needs to be trained.

LM PPL WERRNN +4g
4g - 123.4 32.07
rnnlm 152.5 113.5 31.38
+genre.finetune 148.7 110.4 31.29
+genre.id 144.2 109.3 31.24

Table 2: PPL and WER of genre dependent RNNLMs

In the next experiment, RNNLMs trained with show-level
topic representations were evaluated. In [9], each sentence was
viewed as a document in the training of LDA, and a marginal
(0.1%) performance gain was reported on a system using an
MPE-trained acoustic model. In this work, each show is pro-
cessed as a document for robust topic representation. The test-
set topic representation is found from the recognition hypothe-
ses using the 4-gram LM after CN decoding. For comparison
purposes the reference transcription is also used. For PLSA and
LDA, the number of topics used is 30 unless otherwise stated.

An initial experiment used the non-Tandem MPE acous-
tic model. The RNNLM gave 0.7% absolute WER reduction
over the 4-gram LM, and the LDA based unsupervised adap-
tation gave a further 0.4% WER reduction. The experimental
results using Tandem-SAT acoustic models are shown in Ta-
ble 3. PLSA and LDA gives comparable PPL and WER re-
sults. A 0.2% to 0.3% WER improvement4 and 8% PPL re-
duction were achieved. This is consistently better than genre-
dependent RNNLMs. It is worth noting that the PLSA and LDA
derived from reference (supervised) and hypotheses (unsuper-
vised) gave comparable performance. This shows that the topic
representation inference is quite robust even when the WER is
higher than 30%. The number of topics chosen by HDP is 24,
giving a slightly poorer PPL and WER than LDA and PLSA. It
is maybe related to parameter tuning since the number of top-
ics chosen by HDP was found sensitive to initial parameters.
Table 4 gives the PPL and WER results with different numbers
of LDA topics derived from the reference. The results show that
the performance is fairly insensitive to the number of topics and
30 gives the best performance in terms of PPL and WER.

4WER improvements are statistically significant.

Topic M Sup PPL WERRNN +4g
- - 152.5 113.5 31.38

PLSA hyp 137.8 106.3 31.16
ref 137.3 105.1 31.08

LDA hyp 133.7 105.0 31.14
ref 134.1 104.2 31.07

HDP hyp 138.9 106.6 31.19
ref 138.0 105.2 31.10

Table 3: PPL and WER of RNNLMs with topic representation

Topic Dim PPL WERRNN +4g
20 138.7 106.4 31.13
24 139.3 105.8 31.16
30 134.1 104.2 31.07
40 137.1 104.3 31.11

Table 4: PPL and WER of RNNLM adaptation with LDA using
different numbers of topics

5.3. Results for RNNLM trained on 630M words

An additional 620MW of BBC subtitle data were also available
for LM training. A 4-gram LM trained on the 620M BBC sub-
title data was interpolated with the baseline 4g LM trained on
1 billion words. RNNLMs were trained on all 630M of text,
consisting of the 620M BBC subtitles and the 11MW of acous-
tic model transcription. RNNLMs with 512 hidden nodes were
again used.

LM PPL WER
4-gram(1.0G) 123.4 32.07
4-gram(1.6G) 103.9 30.84
+rnnlm(630M) 94.4 30.18
+rnnlm(630M+LDA) 89.6 30.03

Table 5: PPL and WER of RNNLM trained on 630MW data
Table 5 presents the PPL and WER results with the ad-

ditional 620M words of BBC subtitles. This subtitle corpus
reduced the WER by 1.2% absolute using a 4-gram LM, and
the RNNLM trained on 630M gives a further 0.7% reduction
in WER. RNNLMs with LDA topic features provided an ad-
ditional 0.15% WER reduction5 and a 5% PPL reduction with
unsupervised topic adaptation.

6. Conclusions
In this paper, RNNLM adaptation at the genre and show level
were compared on a multi-genre broadcast transcription task.
Simple fine-tuning on genre specific training data and the use
of a genre code as an additional input give comparable per-
formance. A genre code is preferred since it only uses a sin-
gle model. Continuous vector topic representations such as
PLSA, LDA and HDP were incorporated into the training of
RNNLMs for show-level adaptation, and consistently outper-
formed genre level adaptation. Perplexity and moderate WER
reductions were achieved on a state-of-art ASR system. Fur-
thermore, the use of LDA based topic adaptation is also effec-
tive when RNNLMs are trained on a much larger corpus.

5WER reduction is statistically significant.

34Kai	Yu.	Structured	DL.	MLSLP	16

Speaker	Code	for	DNN	Adaptation [29]

• Speaker code is a vector embedding speaker identity using DNN
• Speaker code and connection weights are randomly intialized and updated using

standard BP during training
• Smaller	set	of	training	data	may	be	used	to	train	B
• During adaptation, only the speaker code is updated on adaptation data and re-

decoding is then performed	

efficiently learned from all or part of training data using additional
information of speaker labels. In test stage, a new speaker code is es-
timated for each new speaker from a small amount of adaptation data
and the estimated speaker code is directly fed to the original DNN
to form a nonlinear transformation in model space. Since there is no
need to estimate the entire generic adaptation neural network as in
[1], the additional training time prior to adaptation is reduced sig-
nificantly. Moreover, experimental results on the Switchboard task
have shown that it can achieve up to 8% relative reduction in word
error rate with only a few adaptation utterances per speaker (from 10
to several dozens).

2. SPEAKER CODE ADAPTATION

The speaker code based adaptation method proposed in [1] and [13]
for DNN-HMM based models is shown as in Fig. 1. This method
relies on learning another generic adaptation neural network as well
as some speaker specific codes. The adaptation neural network con-
sists of weights matrices A(l) and B(l) (for all l), where l stands
for the l-th layer of the adaptation neural network. All layers of
the adaptation neural network are standard fully connected layers.
The top layer of the adaptation neural network represents the trans-
formed features and its size matches the input size. Each layer of
the adaptation neural network receives all activation output signals
of the lower layer along with a speaker specific input vector S(c),
named as speaker code for speaker c, as follows:

O(l) = σ(A(l)O(l−1) + B(l)S(c)) (∀ l) (1)

where O(l) denotes outputs from l-th layers of adaptation neural net-
works and σ(·) stands for sigmoid based nonlinear activation func-
tion.

Fig. 1. Speaker adaptation of the hybrid NN-HMM model based on
speaker code for feature transformation as in [1].

Assume we need to adapt a well-trained DNN (represented by
W(l)), we estimate the adaptation neural network using the back-
propagation (BP) algorithm to minimize the cross entropy between
the target state labels and the DNN outputs of all training data. The
derivatives of cross entropy with respect to all adaptation weights

(all A(l) and B(l)) and speaker code (S(c)) can be easily derived (see
[1] for details). In this stage, all adaptation weights (all A(l) and
B(l)) are learned from training data without changing the original
DNN (all W(l)). Meanwhile, a number of speaker codes (S(c)) are
simultaneously learned with BP for all speakers in the training data
based on the available information of speaker labels in training data.
In other words, all speaker codes are first randomly initialized and
speaker code S(c) is only updated by training data from speaker c. In
this way, we rely on training data as well as the associated speaker
labels to learn a generic adaptation neural network that serves as a
nonlinear feature transformation to normalize speaker variations in
speech signals.

Next, in the adaptation stage, we need to estimate a new speaker
code for each new test speaker from a very small amount of adapta-
tion data. During this phase, only the small speaker code is learned
from adaptation utterances of the target speaker based on the simi-
lar BP algorithm. The whole neural networks (including the initial
speaker independent neural network and the adaptation neural net-
work) are kept unchanged. When testing a new utterance, we import
the speaker code to adaptation neural network to transform the utter-
ance into a generic space prior to feeding it to the original speaker-
independent DNN for final recognition.

3. DIRECT ADAPTATION OF DNNS BASED ON
SPEAKER-CODE

In this work, we study the speaker-code based adaptation method
for large scale speech recognition tasks and propose an alternative
direct adaptation method that conducts speaker adaptation in model
space of DNNs. As show in Fig. 2, instead of stacking an adaptation
neural network below the initial speaker independent neural network
and normalizing speakers features with speakers codes, we propose
to feed the speaker codes directly to the hidden layers and the output
layer of the initial neural network through a set of new connection
weights (all B(l)). In this way, speaker codes are directly used to
adapt the speaker-independent DNNs towards new target speakers.
A main advantage of this new adaptation scheme is that the com-
putation complexity is dramatically reduced in training because we
have no need to learn another set of weight matrices, i.e. all A(l),
from training data. In many cases, A(l) is significantly bigger than
B(l) since B(l) is related to speaker codes (S(c)) that has smaller size
than hidden layers.

Fig. 2. The proposed direct adaptation of DNNs based on speaker
code.

6340

Conversational Telephone Speech (English) Hub5e00

Use 10 adaptation utterances for speaker code estimation

Crit.
Additional Training

Data for Speaker Code
Connection

WER

CE

0 16.2

10% 15.8

100% 15.2

Sequence

0 14.0

10% 13.7

100% 13.4

35Kai	Yu.	Structured	DL.	MLSLP	16

Paragraph Vector [30]
Distributed Memory Model

Distributed Representations of Sentences and Documents

Tasks and Baselines: In (Socher et al., 2013b), the au-
thors propose two ways of benchmarking. First, one could
consider a 5-way fine-grained classification task where
the labels are {Very Negative, Negative, Neutral, Posi-
tive, Very Positive} or a 2-way coarse-grained classifica-
tion task where the labels are {Negative, Positive}. The
other axis of variation is in terms of whether we should la-
bel the entire sentence or all phrases in the sentence. In this
work we only consider labeling the full sentences.

Socher et al. (Socher et al., 2013b) apply several methods
to this dataset and find that their Recursive Neural Tensor
Network works much better than bag-of-words model. It
can be argued that this is because movie reviews are often
short and compositionality plays an important role in de-
ciding whether the review is positive or negative, as well as
similarity between words does given the rather tiny size of
the training set.

Experimental protocols: We follow the experimental
protocols as described in (Socher et al., 2013b). To make
use of the available labeled data, in our model, each sub-
phrase is treated as an independent sentence and we learn
the representations for all the subphrases in the training set.

After learning the vector representations for training sen-
tences and their subphrases, we feed them to a logistic re-
gression to learn a predictor of the movie rating.

At test time, we freeze the vector representation for each
word, and learn the representations for the sentences using
gradient descent. Once the vector representations for the
test sentences are learned, we feed them through the logis-
tic regression to predict the movie rating.

In our experiments, we cross validate the window size us-
ing the validation set, and the optimal window size is 8.
The vector presented to the classifier is a concatenation of
two vectors, one from PV-DBOW and one from PV-DM.
In PV-DBOW, the learned vector representations have 400
dimensions. In PV-DM, the learned vector representations
have 400 dimensions for both words and paragraphs. To
predict the 8-th word, we concatenate the paragraph vec-
tors and 7 word vectors. Special characters such as ,.!? are
treated as a normal word. If the paragraph has less than 9
words, we pre-pad with a special NULL word symbol.

Results: We report the error rates of different methods in
Table 1. The first highlight for this Table is that bag-of-
words or bag-of-n-grams models (NB, SVM, BiNB) per-
form poorly. Simply averaging the word vectors (in a bag-
of-words fashion) does not improve the results. This is
because bag-of-words models do not consider how each
sentence is composed (e.g., word ordering) and therefore
fail to recognize many sophisticated linguistic phenom-
ena, for instance sarcasm. The results also show that

Table 1. The performance of our method compared to other ap-
proaches on the Stanford Sentiment Treebank dataset. The error
rates of other methods are reported in (Socher et al., 2013b).

Model Error rate Error rate
(Positive/ (Fine-
Negative) grained)

Naı̈ve Bayes 18.2 % 59.0%
(Socher et al., 2013b)
SVMs (Socher et al., 2013b) 20.6% 59.3%
Bigram Naı̈ve Bayes 16.9% 58.1%
(Socher et al., 2013b)
Word Vector Averaging 19.9% 67.3%
(Socher et al., 2013b)
Recursive Neural Network 17.6% 56.8%
(Socher et al., 2013b)
Matrix Vector-RNN 17.1% 55.6%
(Socher et al., 2013b)
Recursive Neural Tensor Network 14.6% 54.3%
(Socher et al., 2013b)
Paragraph Vector 12.2% 51.3%

more advanced methods (such as Recursive Neural Net-
work (Socher et al., 2013b)), which require parsing and
take into account the compositionality, perform much bet-
ter.

Our method performs better than all these baselines, e.g.,
recursive networks, despite the fact that it does not re-
quire parsing. On the coarse-grained classification task, our
method has an absolute improvement of 2.4% in terms of
error rates. This translates to 16% relative improvement.

3.2. Beyond One Sentence: Sentiment Analysis with
IMDB dataset

Some of the previous techniques only work on sentences,
but not paragraphs/documents with several sentences. For
instance, Recursive Neural Tensor Network (Socher et al.,
2013b) is based on the parsing over each sentence and it
is unclear how to combine the representations over many
sentences. Such techniques therefore are restricted to work
on sentences but not paragraphs or documents.

Our method does not require parsing, thus it can produce
a representation for a long document consisting of many
sentences. This advantage makes our method more general
than some of the other approaches. The following experi-
ment on IMDB dataset demonstrates this advantage.

Dataset: The IMDB dataset was first proposed by Maas
et al. (Maas et al., 2011) as a benchmark for sentiment anal-
ysis. The dataset consists of 100,000 movie reviews taken
from IMDB. One key aspect of this dataset is that each
movie review has several sentences.

The 100,000 movie reviews are divided into three datasets:

• Paragraph matrix is shared for all words within the paragraph
• Standard BP training can be used to estimate paragraph vector
• Not used for language model adaptation yet.

Wengong Jin, Tianxing He, Yanmin Qian, Kai Yu. Paragraph Vector based Topic Model for
Language Model Adaptation. 16th Annual Conference of the International Speech

Communication Association (INTERSPEECH), Dresden, Germany, 2015: 3516-3520.

Training Data

Topic 1 Topic 2

Topic 3 Topic 4

Background LM

Topic 1 LM Topic 2 LM

Topic 3 LM Topic 4 LM

Topic Extraction

D W W W

Sentence ID the cat sat

Average/Concatenate

Softmax classifier

onParagraph Vector

36Kai	Yu.	Structured	DL.	MLSLP	16

Structured Output – Multi-task Training
• Multi-task training

– Multi-task training for text-dependent speaker verification
– Multi-task joint training for robust ASR

• Multi-view and multi-task combination

– Multi-factor training for robust ASR

Basic Idea: Jointly estimate the target-of-interest and context-related
task, expecting context is embedded during deep feature extraction

Basic Idea: Reinforce context modelling by combining both input and
output context representation

37Kai	Yu.	Structured	DL.	MLSLP	16

Multi-task Joint Learning for Robust ASR [40]

Aurora 4 Result

38Kai	Yu.	Structured	DL.	MLSLP	16

Multi-factor Joint Training [41]

AMI Far-field Dataset

39Kai	Yu.	Structured	DL.	MLSLP	16

Structured Model – Context-Specific Structure
• Context-specific linear transform

– Input/output feature transform [42][43][46][47][49]
– Hidden layer feature transform [44][45]

• Explicit context-specific structure

– Context-dependent layer [48]
– Additional or factorized structures [49][50][51][52][38]

Basic Idea: Apply speaker-specific linear transform to normalize
hierarchical deep features

Basic Idea: Construct context specific subspace within deep learning
models

40Kai	Yu.	Structured	DL.	MLSLP	16

Transfer	Linear	Transform Adaptation	to	DNN

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Submission and Formatting Instructions for ICML 2014

t works show that huge sparseness is existed in the DNN
model (Yu et al., 2012; Xue et al., 2013). It is shown that a
large portion of weight parameters in DNN are very small,
and directly throwing away the weights close to zero could
reduce the model size (Yu et al., 2012). Moreover the work
in (Xue et al., 2013) applied singular value decomposition
(SVD) on the weight matrices of a fully trained DNN to re-
structure the model. All these approaches can dramatically
reduce DNN complexity while keeping the original recog-
nition performance after model retuning, however, these
model reduction approaches can only speeding up decod-
ing and bring no benefits to accelerate training process.

Inspired by the works in model sparsity, in this work, we
proposed a new framework focusing on both training accel-
eration and model reduction. Redundancies in both training
corpus and model structure are explored, and refinements
are implemented on these two levels. To reduce the redun-
dancy in the training data, a new training framework named
stochastic data sweeping is utilized. It randomly samples
a subset of the whole data set for training at each epoch,
where the sampling data amount is controlled by a dynamic
data sweeping function. The computation cost is saved nat-
urally due to the reduction in training data amount. In addi-
tion, automatic model structure refinements are designed to
explore the model sparsity. Some metrics are used to eval-
uate the importance of the hidden nodes or the arcs (links
between nodes), and then node and arc refinements are ap-
plied to obtain a more compact structure. Different from
the model restructures in previous works (Yu et al., 2012;
Xue et al., 2013), we pushed the model refinements to the
beginning of the DNN training, which will benefit not only
the reduced model size but also more accelerated training.

Moreover, considering that our proposed novel framework
is hardware-independent, it can be easily combined with
other hardware-based strategies ((Chen et al., 2012; Zhou
et al., 2013)) to get additive improvement and more faster
training architecture.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the DNN structure and the SGD based back-
propagation optimization briefly. Then the training frame-
work of stochastic data sweeping is described in section 3
to restrict the redundancy in the training data. In section 4,
model redundancies are investigated and automatic model
structure refinements are implemented on both nodes and
arcs. Experiments as well as analysis are given in section
5. Finally section 6 concludes the paper and discusses fu-
ture research directions.

2. DNN Training with SGD

DNN is a feed-forward, artificial neural network which has
more than one hidden layer between its inputs and output-

Ă

Ă

Ă

Ă

Ă

Input
layer

Output
Layer

h1

hn

h2

w2

wn

w1

Node

Arc

Ă

Figure 1. Deep Neural Network in Speech Recognition.

s. In ASR systems, the hybrid DNN-HMM framework is
commonly used and the acoustic events are modelled by a
DNN.

Figure 1 illustrates the normal structure of a DNN used in
speech recognition, including the input, output and hidden
layers with fully connected between adjacent layers. At
each time instance, DNN accepts an input observation vec-
tor o and converts it to posterior probability P (s|o), where
s is usually a senone state. Assuming that the DNN has L
hidden layers (layer l has N l hidden nodes) with layer 0 as
the input layer and layer L+1 as the output layer, for each
input feature vector o, the output of node i of hidden layer
l, yl

i

(o), can be computed as follows:

y

l

i

(o) = f

0

@
X

j

w

l

ji

y

l�1
j

(o) + b

l

i

1

A
, 1  l  L (1)

where w

l

ji

is the transition weight on the arc between node
j of layer l � 1 and node i of layer l. The b

l is the bias
vector of layer l and f is the activation function, normally
using sigmoid, tangent or rectified (Maas et al., 2013). And
finally the softmax function is applied on output layer units
to get P (s|o).

The parameters of the DNN are optimized according to the
cross entropy criterion

L(✓) = �
X

s

d

s

logP (s|o, ✓) (2)

where ✓ is the set of model parameters, and P (s|o) is the

Basic Idea: Apply context-specific linear transform to
normalize features of DNN

• Feature discriminative linear
transform (fDLR) [46]

• Linear input network	(LIN) [47,49]

• Output feature discriminative
linear transform (oDLR) [42]

• Linear output network (LON) [43]

• SVD bottleneck adaptation [44]
• Linear hidden network [45]

41Kai	Yu.	Structured	DL.	MLSLP	16

Adaptive	Training	with Context-specific Layer [48]
Basic Idea: Split DNN into context-dependent and context-

independent layers and interleavingly update them

a standard Multi-Layer Perceptron (MLP) network whose node has
connection weights and bias. In the figure, we assume that our DNN
has seven layers (L0, . . . , L6), and for illustration simplicity, it has
just two nodes at every layer. The weights between layers Ll and
Ll−1 are represented in the matrix form such as Wl, but the details
of this definition will be given in subsequent subsections where we
describe each step of the training scheme in detail. In the figure,
again for illustration simplicity, no biases are depicted.

2.2. Initialization

Fig. 1 (a) illustrates the initial status of our DNN, which works as
part of the baseline SI DNN-HMM recognizer.

For effective network training, the DNN must be appropriately
initialized. A standard initialization is using the Restricted Boltz-
mann Machine (RBM). However, this non-discriminative training is
not necessarily suitable for recognition. Therefore, an alternative,
somewhat advanced initialization can be considered. An example
of such advanced initialization is to discriminatively train the RBM-
pre-trained DNN with Error Back Propagation (EBP) training [9]
using the minimum CE loss criterion.

In Fig. 1 (a), WSI
l represents the weight matrix of Ll (and Ll−1),

which is produced by the above CE loss minimization and works for
the SI DNN-HMM recognizer.

2.3. Re-training with speaker-dependent module allocation

In Fig. 1, we assume the allocation of SD modules, i.e., SD1, . . . , SDS ,
to the second layer (L2), where S is the number of speakers in the
training dataset and Ws

2 is the weight matrix of SDs.
First, as illustrated in Fig. 1 (b), we initially set S SD modules to

layer L2 by copying WSI
2 of the initial network. Note that the node

connection between an added SD module (at L2) and its adjacent
layers (L1 and L3) is dynamically controlled in conjunction with
the speaker-by-speaker selection of the training speech data. Fig. 1
(b) illustrates two example cases: one for using the speech data of
speaker 1 and one for speaker 2. When using the data of speaker 1,
only the nodes of SD1 are connected with the nodes of the adjacent
layers; the nodes of the other SD modules, SD2, . . . , SDS , are dis-
connected with the nodes in the adjacent layers. The green dashed
line depicts this situation, and training is executed only along this
path. Similarly, the purple solid line depicts the situation in the case
of using the data of speaker 2. Clearly, each SD module is trained
only using its corresponding speaker’s data, but the other part of the
network is trained using the data of all speakers.

We conducted the re-training using EBP training, as in the ini-
tialization stage. One additional device here is to incorporate regu-
larization into the EBP training. The size of each bit of speaker data
is usually limited, and this restriction easily causes over-fitting to the
training data, or in other words, a decrease in the robustness to the
unseen data for the SD modules. The regularization details will be
explained in 2.5.

Here, to circumvent the over-fitting problem, alternatives to reg-
ularization are possible, e.g., Cluster Adaptive Training (CAT) [10],
which increases the amount of speech data that can be used to train
the SD module by clustering all the available speakers into groups
of acoustically similar speakers.

As reported in previous studies on SAT, the above speaker-by-
speaker re-training is expected to increase the adaptability of the net-
work to some selected speaker’s data.

2.4. Speaker adaptation using speaker-dependent modules

In the final stage of the SAT scheme, we adapt a preset speaker mod-
ule, which is placed in the re-trained DNN, using the speech data

Fig. 1. Network configurations and training procedures of Speaker
Adaptive Training (SAT) for DNN. (a) Speaker-Independent (SI)
DNN, (b) Training procedure with Speaker-Dependent (SD) mod-
ule allocation, (c) Pre-Trained Speaker Adaptive Training (PT-SAT)
DNN.

of a particular target speaker. In the scenario of Fig. 1, the preset
speaker module is embedded into L2 and adapted.

Fig. 1 (c) illustrates the status in which a preset speaker module,
represented by Wmean

2 , is set to L2 of the re-trained DNN, where
WSAT

l represents the weight matrix generated through re-training.
Here, there are many possible ways of preparing the preset speaker
module. In the figure, we make the following assumption about the
module: 1) place the 2nd layer’s weight matrix of SI DNN as an ini-
tial state of the SD module, and 2) re-train the initial matrix using all
the training speech data using non-regularized EBP training with the
CE loss minimization criterion. The Term Wmean

2 represents the sit-
uation where all the training speech data is used for updating its cor-
responding parameters (weights), and we refer to the resulting net-
work (Fig. 1 (c)) as Pre-Trained SAT (PT-SAT) network. We adopt
non-regularized EBP training because all the training data, which are
usually large, can be used.

In the adaptation, we adapt Wmean
2 using the target speaker’s

speech data. Note that the other weights all are fixed. Similar to
the former re-training stage using all the training data, the update of
Wmean

2 is executed with the regularized EBP training, where the reg-
ularization is incorporated into the EBP training using the CE loss.
Since the data size for the adaptation is often limited, we need to take
the over-fitting problem into account. Also note that the adaptation
of only the SD modules probably helps circumvent the over-fitting

6400

• Regularization is required for
speaker-dependent layer update

• Performance

TED	Talks	corpus,	supervised	adaptation	

lSD SI Adaptation SAT

1 26.4 20.0 18.9

2 26.4 19.0 18.2

3 26.4 18.7 18.0

4 26.4 19.0 18.4

5 26.4 19.5 19.0

Slide 63

�w
t

= �⌘rL
ce

(w
t

) + ↵�w
t�1

� � (w
t�1

�w
0

)

Slide 68

R(⇤) =

1

2

�

�Wt

l

SD

�Wmean

l

SD

�

�

2

2

+

1

2

�

�bt

l

SD

� bmean

l

SD

�

�

2

2

(t = 1, 2, 3, · · · , T)

Slide 74

ˆH = argmax

H
P (H|O) = argmax

H
p (O|H)

| {z }

acoustic model

language model

z }| {

P (H)

P (H) =

K+1

Y

k=1

P (w

k

|w
1

, · · · , w
k�1

)

P (w

k

|w
1

, · · · , w
k�1

) = P (w

k

|w
k�1

, · · · , w
k�n+1

)

W

k�1

k�n+1

:

= w

k�1

, · · · , w
k�n+1

P

�

w

k

|W k�1

k�n+1

�

=

X

m

�

m

P

m

�

w

k

|W k�1

k�n+1

�

V · V n�1

= V

n

Slide 77

P

�

w

k

|W k�1

k�n+1

�

=

X

m

�

m

P

m

�

w

k

|W k�1

k�n+1

�

X

m

�

m

= 1

�̂ = argmax

�
{P (H)}

�̂m = argmin

�m

(

X

H

P (H|O)L (H,H
ref

)

)

�̂m = argmax

�m

(

log

X

H

p (O|H)P (H)

)

6

42Kai	Yu.	Structured	DL.	MLSLP	16

Cluster Adaptive Training [49]

𝐌 𝐥 = 𝑾𝟏
𝒍 …		𝑾𝑷

𝒍

𝛌 𝒔𝒍 = 𝝀𝟏
𝒔𝒍 …	𝝀𝑷

𝒔𝒍 	
-

𝐖 /0 = 1𝜆3
45 𝑾3

5
6

378

CAT-DNN

𝒚𝒍
𝒔 = 𝑾 𝒔𝒍 𝒐𝒍;𝟏

𝒔 + 𝒃 𝒍

𝒐𝒍 = 𝝈(𝒚𝒍)

System Cluster #Adapt Para swb fsh

SI
+ i-vector

-
-

0
100

15.8
14.8

19.9
18.3

H1
2
5
10

2
5
10

15.2
15.0
14.6

18.8
18.7
17.8

DNN

𝒚𝒍 = 𝑾 𝒍 𝒐𝒍;𝟏 + 𝒃 𝒍

𝒐𝒍 = 𝝈(𝒚𝒍)

43Kai	Yu.	Structured	DL.	MLSLP	16

Unsupervised Adaptation with Node
Co-activation Prior [38]

input

output

hidden
layer

1
T YYT

speech speech
+	white	noise	(10dB)

Y =	HL	activations	
(test	batch)

adaptation

1
T YYT

E=||CR −	Ct||2

speech
+	white	noise	(10dB)

+	NCCA

Y =	HL	
activations	(test	
batch)

Node	co-activation	matrix: captures	the	correlational	structure	of	nodes	over	time

44Kai	Yu.	Structured	DL.	MLSLP	16

Sequence summarizing [50]

Table 1. Comparing the i-vector and “summary vector” speaker
adaptation of DNN on “simplified recipe”: 4 layers, random initial-
ization, FBANK features with Hamming-DCT processing.

Simplified DNN recipe WER%
dev eval

mini-batch training 27.9 31.4
+ i-vector 27.1 29.8

per-utterance update 28.0 31.3
+ “summary vector” 27.5 29.9
+ “summary vector” and i-ivector 27.0 29.2

per-utterance update (FMLLR) 27.4 28.8
+ “summary vector” 27.3 28.4

Table 2. Comparing the i-vector and “summary vector” speaker
adaptation of DNN on very challenging “complete recipe”: 6 layers,
RBM pre-training, FMLLR features.

Complete DNN recipe WER%
dev eval

Baseline
- frame training 25.8 27.1
- sMBR 24.2 24.7
i-vector
- frame training 25.6 26.3
- sMBR 23.8 23.9
“summary vector”
- frame training 26.0 26.6

(no RBM, random init.) 26.4 27.0
- sMBR 24.5 24.6

ing of i-vector extractor in [9], but this already deviates from the
per-sentence processing we use for SSNN.

The results for the “complete DNN recipe” are in Table 2, where
we again compare the i-vector and “summary vector” systems with
the baseline. Here the baseline has speaker-adapted FMLLR fea-
tures, a large topology initialized by RBM pre-training, and trained
by per-frame training and sequence-discriminative sMBR training.
After sMBR training, the i-vector system outperforms the very chal-
lenging baseline system by 0.4% on dev set and 0.8% on eval set. On
the other hand, the comparison of sMBR “summary vector” system
with the sMBR baseline system shows a little degradation of -0.3%
on dev-set and tiny improvement of 0.1% on eval-set. This result is a
little disappointing, however if we subdivide the dev set by sentence
lengths as shown in figure 2, we see that the system with “summary
vectors” outperforms both the baseline and i-vector DNN systems
on sentences longer than 10 seconds, which is promising. Certainly
there is an open space for further investigation.

Last, as the RBM pre-training with “summary vectors” on input
requires SSNN which is already trained, we tried to replace the RBM
initialization with random initialization. This leads to performance
degradation of 0.4% on both test sets (3rd block of Table 2).

6. CONCLUSIONS AND DISCUSSION

In this paper, we proposed an alternative method to produce DNN
adaptation vectors similar to i-vectors. The vectors are computed
by the Sequence Summarizing Neural Network and characterize
the acoustics in an utterance. This is done by enclosing sentence-
averaging operation in the last component. The SSNN network
is trained together with the main network using standard back-
propagation algorithm with per-utterance updates.

For the simplified system, the performance improvement from
the proposed SSNN method is comparable to the case when i-vectors
are used. The combination of i-vectors and SSNN leads to further
improvements.

On the very challenging complete system, the i-vectors were
more beneficial, than the SSNN method, which did not bring clear
improvement compared to the baseline, but the results from long
sentences in figure 2 are encouraging.

The benefit of the proposed technique is that it does not require
multi-pass decoding and it relies only on one single test utterance,
giving it the potential to become more practical than the i-vector
method which needs several utterances for each speaker and the
complicated i-vector extraction framework.

Finally, our belief is that the use of Sequence Summarizing Neu-
ral Network is not limited to speaker adaptation of DNN. We see it
as a generic framework which can produce “summary vectors” for
sequential data in general. The SSNN framework is conceptually
simpler than recurrent networks, which also support the transfer of
information across frames.

The information transfer in recurrent networks is local and the
order of frames is important. The signal from more distant frames
is hard to pass because it gets changed by each cycle of recurrency.
This limitation is less severe in LSTMs, where the memory cells
keep inner state across frames. Contrarily, the frame order in aver-
aging is unimportant and all the frames are equally important.

In future we can study the interactions of RNNs and the sen-
tence averaging. Another promising direction is to extend the aver-
aging into history or try to improve the “summary vectors” of short
sentences.

Fig. 2. Performance on dev set, subdivided by sentence lengths
(complete recipe, sMBR systems from table 2). The i-vector inputs
(estimated per-speaker) are helpful for all sentence lengths, while
“summary vectors” (extracted per-sentence) are deletrious for short
sentences and helpful for sentences longer than 10 seconds.

• Sequence sum network
estimates utterance level
context representation

• Joint training of summarizing
NN and main NN

• Sequence level BP
• Better for long sentence

¯o
u,t

= [o
u,t

x
u

]

>

x
u

(o
u

; ✓

x

) =

1

T

u

Tu
X

t=1

x
u

(o
u

; ✓

x

)

L
ctc

= logP (y|x)
Slide 7

L
ce

=

T

X

t=1

logP (y

t

|x
t

)

L
ctc

= logP (y|x)

P (y|x) =
X

a2B�1
(y)

P (a|x)

Slide 4

ˆH = argmax

H
p(o|H)P (H)

Slide 5

p(o) =

X

q

P (q)p(o|q)

=

X

q

Y

t

a

qt�1qtbqt(ot

)

Slide 7

O =

n

O(1)

, · · · ,O(S)

o

Slide 12

b

j

(o
t

) =

Mj
X

m=1

c

jm

N
⇣

o
t

;µ(jm)

,⌃(jm)

⌘

�

m

(t) = P (q

t

= j, g

t

= m|O,

ˆM)

N (o;µ,⌃) = (2⇡)

�D
2 |⌃|� 1

2
exp

⇢

�1

2

(o� µ)>⌃�1

(o� µ)

�

Slide 13

ˆM
ML

= argmax

M
log p (O|H,M)

Q
⇣

M;

ˆM
⌘

= �1

2

X

t,m

�

m

(t)

⇢

log |⌃(m)|+
⇣

o
t

� µ(m)

⌘> ⇣
⌃(m)

⌘�1

⇣

o
t

� µ(m)

⌘

�

ˆµ(m)

=

P

t

�

m

(t)o
t

P

t

�

m

(t)

ˆ⌃(m)

= diag

P

t

�

m

(t)

�

o
t

� ˆµ(m)

� �

o
t

� ˆµ(m)

�>

P

t

�

m

(t)

!

�

m

(t) = P

⇣

q

t

= j, c

t

= m|O,

ˆM
⌘

Slide 15

M
MAP

= argmax

M
log p (M|O,H) = argmax

M
{log p (O|M,H) + log p (M|�)}

1

¯o
u,t

= [o
u,t

x
u

]

>

x
u

(o
u

; ✓

x

) =

1

T

u

Tu
X

t=1

x
u

(o
u

; ✓

x

)

L
ctc

= logP (y|x)
Slide 7

L
ce

=

T

X

t=1

logP (y

t

|x
t

)

L
ctc

= logP (y|x)

P (y|x) =
X

a2B�1
(y)

P (a|x)

Slide 4

ˆH = argmax

H
p(o|H)P (H)

Slide 5

p(o) =

X

q

P (q)p(o|q)

=

X

q

Y

t

a

qt�1qtbqt(ot

)

Slide 7

O =

n

O(1)

, · · · ,O(S)

o

Slide 12

b

j

(o
t

) =

Mj
X

m=1

c

jm

N
⇣

o
t

;µ(jm)

,⌃(jm)

⌘

�

m

(t) = P (q

t

= j, g

t

= m|O,

ˆM)

N (o;µ,⌃) = (2⇡)

�D
2 |⌃|� 1

2
exp

⇢

�1

2

(o� µ)>⌃�1

(o� µ)

�

Slide 13

ˆM
ML

= argmax

M
log p (O|H,M)

Q
⇣

M;

ˆM
⌘

= �1

2

X

t,m

�

m

(t)

⇢

log |⌃(m)|+
⇣

o
t

� µ(m)

⌘> ⇣
⌃(m)

⌘�1

⇣

o
t

� µ(m)

⌘

�

ˆµ(m)

=

P

t

�

m

(t)o
t

P

t

�

m

(t)

ˆ⌃(m)

= diag

P

t

�

m

(t)

�

o
t

� ˆµ(m)

� �

o
t

� ˆµ(m)

�>

P

t

�

m

(t)

!

�

m

(t) = P

⇣

q

t

= j, c

t

= m|O,

ˆM
⌘

Slide 15

M
MAP

= argmax

M
log p (M|O,H) = argmax

M
{log p (O|M,H) + log p (M|�)}

1

45Kai	Yu.	Structured	DL.	MLSLP	16

Context Modelling with Structured Learning

• Information rate modelling
• Easy prior knowledge incorporation
• Explicit structure related to context effect
• Unsupervised on-line context learning
• Text based context modelling

46Kai	Yu.	Structured	DL.	MLSLP	16

Summary

• Context is the non-targeted but influential factors,
which may have different information rates

• Context modelling is an unsolved issue for DL
• Re-training under context – Implicitmodelling

• Structured deep learning – Explicitmodelling
Multi-view input with context representation
Multi-task output with context target or constraint
Structured model parameters to incorporate context

Acknowledgement
• The speaker would like to thank the	students of the SJTU

speech lab, Yimeng Zhuang, Tian Tan and Tianxing He, who
helped to prepare the slides.

• Some images/tables in this slides are directly taken from the
cited research papers. The authors of these papers are
appreciated.

• Some figures are redrawn based on lecture notes/slides from
the web.The original authors are also appreciated.

48Kai	Yu.	Structured	DL.	MLSLP	16

References
[1]	Yu,	Dong,	and	Li	Deng.	"Deep	learning	and	its	applications	to	signal	and	information	processing	[exploratory	dsp]."	IEEE	Signal	
Processing	Magazine	28.1	(2011):	145-154.
[2]	Graves,	Alex,	Navdeep Jaitly,	and	Abdel-rahmanMohamed.	"Hybrid	speech	recognition	with	deep	bidirectional	LSTM."	
Automatic	Speech	Recognition	and	Understanding	(ASRU),	2013	IEEE	Workshop	on.	IEEE,	2013.
[3]	Graves,	Alex,	and	Navdeep Jaitly.	"Towards	End-To-End	Speech	Recognition	with	Recurrent	Neural	Networks."	ICML.	Vol.	14.	
2014.
[4]	Yanmin Qian,	Mengxiao Bi	,	Tian Tan,	Kai	Yu.	"Very	Deep	Convolutional	Neural	Networks	for	Noise	Robust	Speech	
Recognition“IEEE/ACM	Transactions	on	Audio,	Speech,	and	Language	Processing	.	IEEE,	2016.
[5]	Sainath,	Tara	N.,	et	al.	"Convolutional,	long	short-term	memory,	fully	connected	deep	neural	networks."	2015	IEEE	
International	Conference	on	Acoustics,	Speech	and	Signal	Processing	(ICASSP).	IEEE,	2015.
[6]	Hannun,	Awni,	et	al.	"Deep	speech:	Scaling	up	end-to-end	speech	recognition."	arXiv preprint	arXiv:1412.5567	(2014).
[7]	Sercu,	Tom,	et	al.	"Very	deep	multilingual	convolutional	neural	networks	for	LVCSR."	2016	IEEE	International	Conference	on	
Acoustics,	Speech	and	Signal	Processing	(ICASSP).	IEEE,	2016.
[8]	Seltzer,	Michael	L.,	Dong	Yu,	and	Yongqiang Wang.	"An	investigation	of	deep	neural	networks	for	noise	robust	speech	
recognition."	2013	IEEE	International	Conference	on	Acoustics,	Speech	and	Signal	Processing.	IEEE,	2013.
[9]	Yu,	Dong,	et	al.	"Feature	learning	in	deep	neural	networks-studies	on	speech	recognition	tasks."	arXiv preprint	arXiv:1301.3605	
(2013).
[10]	Schwenk,	Holger,	Anthony	Rousseau,	and	Mohammed	Attik.	"Large,	pruned	or	continuous	space	language	models	on	a	gpu
for	statistical	machine	translation."	Proceedings	of	the	NAACL-HLT	2012	Workshop:	Will	We	Ever	Really	Replace	the	N-gram	Model?	
On	the	Future	of	Language	Modeling	for	HLT.	Association	for	Computational	Linguistics,	2012.
[11]	Sundermeyer,	Martin,	Ralf	Schlüter,	and	Hermann	Ney.	"LSTM	Neural	Networks	for	Language	Modeling."	Interspeech.	2012.
[12]	Mikolov,	Tomáš.	"Statistical	language	models	based	on	neural	networks."	Presentation	at	Google,	Mountain	View,	2nd	April	
(2012).
[13]	Dong	Yu.	"Deep	Learning	and	Its	Applications	in	Signal	Processing."	ICASSP	Tutorial.	2012

49Kai	Yu.	Structured	DL.	MLSLP	16

[14]	Huang,	Yan,	et	al.	"A	comparative	analytic	study	on	the	Gaussian	mixture	and	context	dependent	deep	neural	network	hidden	
Markov	models."	INTERSPEECH.	2014.
[15]	B.	S.	Atal.	"Effectiveness	of	linear	prediction	characteristics	of	the	speech	wave	for	automatic	speaker	identication and	
verication."	Journal	of	the	acoustical	society	of	America,	55(6):1304.1312,	1974.
[16]	P.	C.	Woodland,	J.	J.	Odell,	V.	Valtchev,	and	S.	J.	Young.	"The	development	of	the	1994	HTK	large	vocabulary	speech	
recognition	system."	In	ARPA	Workshop	on	Spoken	Language	Systems	Technology,	pages	104.109,	1995.
[17]	G.	Saon,	A.	Dharanipragada,	and	D.	Povey.	"Feature	space	Gaussianization."	In	Proc.	ICASSP,	2004.
[18]	L.	Lee	and	R.	C.	Rose.	"Speaker	normalization	using	efcient frequency	warping	procedures."	Proc.	ICASSP,	1:353.356,	1996.
[19]	M.	J.	F.	Gales.	"Maximum	likelihood	linear	transformations	for	HMM-based	speech	recognition."	Computer	Speech	and	
Language,	12:75.98,	1998.
[20]	M.	J.	F.	Gales.	Cluster	adaptive	training	for	speech	recognition.	In	Proc.	ICSLP,	pages	1783.1786,	1998.
[21]	T.	Anastasakos,	J.	Mcdonough,	R.	Schwartz,	and	J.	Makhoul.	A	compact	model	for	speaker	adaptive	training.	In	Proc.	ICSLP,	
pages	1137–1140,	1996.
[22]	Yu	D,	Yao	K,	Su	H,	et	al.	KL-divergence	regularized	deep	neural	network	adaptation	for	improved	large	vocabulary	speech	
recognition[C]Acoustics,	Speech	and	Signal	Processing	(ICASSP),	2013	IEEE	International	Conference	on.	IEEE,	2013:	7893-7897.	
[23]	Liao	H.	Speaker	adaptation	of	context	dependent	deep	neural	networks[C]Acoustics,	Speech	and	Signal	Processing	(ICASSP),
2013	IEEE	International	Conference	on.	IEEE,	2013:	7947-7951.	
[24]	D.	Albesano,	R.	Gemello,	P.	Laface,	F.	Mana,	and	S.	Scanzio,	"Adaptation	of	artificial	neural	networks	avoiding	catastrophic	
forgetting,"	in	Proc.	Int.	Jnt.	Conference	on	Neural	Networks	2006,	pp.	2863-2870,	2006.
[25]	J.	Stadermann and	G.	Rigoll,	“Two-stage	speaker	adaptation	of	hybrid	tied-posterior	acoustic	models,”	in	Proc.	ICASSP’05,	vol.	
I,	pp.	997-1000,	2005.
[26]	G.	Saon,	H.	Soltau,	D.	Nahamoo,	et	al.	Speaker	adaptation	of	neural	network	acoustic	models	using	i-vectors.	ASRU,	2013.
[27]	Michael	Seltzer,	Dong	Yu,	and	Yongqiang Wang.	An	Investigation	Of	Deep	Neural	Networks	For	Noise	Robust	Speech	
Recognition.	ICASSP,	2013
[28]	J.	Li,	J.	T.	Huang,	Y.	Gong.	Factorized	adaptation	for	deep	neural	network.	ICASSP,	2014.
[29]	O.	Abdel-Hamid,	H.	Jiang.	Fast	speaker	adaptation	of	hybrid	NN/HMM	model	for	speech	recognition	based	on	discriminative	
learning	of	speaker	code.	ICASSP,	2013.
[30]	Quoc Le	and	Tomas	Mikolov.	Distributed	Representations	of	Sentences	and	Documents.	ICML	2015.
[31]	Tan,	Tian,	et	al.	"Speaker-aware	training	of	LSTM-RNNS	for	acoustic	modelling."	2016	IEEE	International	Conference	on	
Acoustics,	Speech	and	Signal	Processing	(ICASSP).	IEEE,	2016.

50Kai	Yu.	Structured	DL.	MLSLP	16

[32]	Tong,	Sibo,	Hao Gu,	and	Kai	Yu.	"A	comparative	study	of	robustness	of	deep	learning	approaches	for	VAD."	2016	IEEE	
International	Conference	on	Acoustics,	Speech	and	Signal	Processing	(ICASSP).	IEEE,	2016.
[33]	Vishwa Gupta,	Patrick	Kenny,	Pierre	Ouellet,	Themos Stafylakis.	I-vector-based	speaker	adaptation	of	deep	neural	networks	
for	french broadcast	audio	transcription.	ICASSP,	2014
[34]	P.	Kenny,	G.	Boulianne,	P.	Ouellet,	and	P.	Dumouchel,	“Joint	factor	analysis	versus	eigenchannels in	speaker	recognition,”	IEEE	
Transactions	on	Audio,	Speech,	and	Language	Processing,	vol.	15,	no.	4,	pp.	1435-1447,	2007
[35]	P.	J.	Moreno,	“Speech	recognition	in	noisy	environments,”	Ph.D.	thesis,	Carnegie	Mellon	University,	1996.
[36]	J.	Li,	L.	Deng,	D.	Yu,	Y.	Gong,	and	A.	Acero,	“A	unified	framework	of	HMM	adaptation	with	joint	compensation	of	additive	and	
convolutive distortions,”	Computer,	Speech	and	Language,	vol.	23,	no.	3,	pp.	389–405,	2009.
[37]	Chen,	Xie,	et	al.	"Recurrent	neural	network	language	model	adaptation	for	multi-genre	broadcast	speech	recognition."	
Proceedings	of	InterSpeech.	2015.
[38]	T. Nagamine et	al.	”Adaptation of neural networks constrained by prior statistics of node co-activations.”,	INTERSPEECH,	2016.
[39]	Yu,	Nanxin Chen	Yanmin Qian	Kai.	"Multi-task	learning	for	text-dependent	speaker	verification."	(2015).
[40]	Qian,	Yanmin,	et	al.	"Multi-task	joint-learning	of	deep	neural	networks	for	robust	speech	recognition."	2015	IEEE	Workshop	
on	Automatic	Speech	Recognition	and	Understanding	(ASRU).	IEEE,	2015.
[41]	Qian,	Yanmin,	et	al.	"Integrated	adaptation	with	multi-factor	joint-learning	for	far-field	speech	recognition."	2016	IEEE	
International	Conference	on	Acoustics,	Speech	and	Signal	Processing	(ICASSP).	IEEE,	2016.
[42]	K.	Yao,	D.	Yu,	F.	Seide,	et	al.	Adaptation	of	context-dependent	deep	neural	networks	for	automatic	speech	recognition.	IEEE	
SLT.	2012:	366-369.
[43]	B.	Li	and	K.	C.	Sim,	“Comparison	of	discriminative	input	and	output	transformations	for	speaker	adaptation	in	the	hybrid	
NN/HMM	systems,”	in	Proc.	InterSpeech,	2010
[44]	Xue,	Jian,	et	al.	"Singular	value	decomposition	based	low-footprint	speaker	adaptation	and	personalization	for	deep	neural	
network."	2014	IEEE	International	Conference	on	Acoustics,	Speech	and	Signal	Processing	(ICASSP).	IEEE,	2014.
[45]	R.	Gemello,	F.	Mana,	S.	Scanzio,	et	al.	Linear	hidden	transformations	for	adaptation	of	hybrid	ANN/HMM	models.	Speech	
Communication,	2007,	49(10):	827-835.
[46]	Seide,	Frank,	et	al.	"Feature	engineering	in	context-dependent	deep	neural	networks	for	conversational	speech	transcription."	
Automatic	Speech	Recognition	and	Understanding	(ASRU),	2011	IEEE	Workshop	on.	IEEE,	2011.
[47]	J.	Neto,	L.	Almeida,	M.	Hochberg,	C.	Martins,	L.	Nunes,	S.	Renals,	and	T.	Robinson,	“Speaker-adaptation	for	hybrid	HMM-ANN	
continuous	speech	recognition	system,”	EuroSpeech,	1995.

51Kai	Yu.	Structured	DL.	MLSLP	16

[48]	T.	Ochiai,	S.	Matsuda,	X.	Lu,	et	al.	Speaker	Adaptive	Training	using	Deep	Neural	Networks.	ICASSP,	2014.
[49]	Tan,	Tian,	Yanmin Qian,	and	Kai	Yu.	"Cluster	adaptive	training	for	deep	neural	network	based	acoustic	model."	IEEE/ACM	
Transactions	on	Audio,	Speech,	and	Language	Processing	24.3	(2016):	459-468.
[50]	Karel Vesely,	et.	Al.	Sequence	Summarizing	Neural	Network	for	Speaker	Adaptation.	ICASSP	2016.
[51]	He,	Tianxing,	et	al.	"Recurrent	neural	network	language	model	with	structured	word	embeddings for	speech	recognition."	
2015	IEEE	International	Conference	on	Acoustics,	Speech	and	Signal	Processing	(ICASSP).	IEEE,	2015.
[52]	Swietojanski,	Pawel,	and	Steve	Renais.	"SAT-LHUC:	Speaker	adaptive	training	for	learning	hidden	unit	contributions."	2016	
IEEE	International	Conference	on	Acoustics,	Speech	and	Signal	Processing	(ICASSP).	IEEE,	2016.

52Kai	Yu.	Structured	DL.	MLSLP	16

