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AM: CD-DNN-HMM v.s. GMM-HMM
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AM: LSTM
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AM: LSTM-CTC
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AM: Very Deep CNN and CLDNN
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AM: Performance Gain (swbd) [6][7]
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AM: Performance Gain (aurora4) [8][9]
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—Average WER
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LM: FDNN v.s. N-gram
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indices in wordlist P dimensional vectors
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LM: RNN and LSTM

I output layer
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2nd hidden layer
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LM: Performance Improvement [12]

Model Perplexity Entropy reduction
over baseline
individual | +KN5 | +KNb5+-cache || KN5 | KN5+cache
3-gram, Good-Turing smoothing (GT3) 165.2 - - - -
5-gram, Good-Turing smoothing (GT5) 162.3 - - - -
3-gram, Kneser-Ney smoothing (KN3) 148.3 - - - -
5-gram, Kneser-Ney smoothing (KN5) 141.2 - B - -
5-gram, Kneser-Ney smoothing + cache 125.7 - - - -
PAQ8010t 131.1 - - - -
Maximum entropy 5-gram model 142.1 138.7 124.5 0.4% 0.2%
Random clusterings LM 170.1 126.3 115.6 2.3% 1.7%
Random forest LM 131.9 131.3 117.5 1.5% 1.4%
Structured LM 146.1 125.5 114.4 2.4% 1.9%
Within and across sentence boundary LM 116.6 110.0 108.7 5.0% 3.0%
Log-bilinear LM 144.5 115.2 105.8 4.1% 3.6%
Feedforward neural network LM [50] 140.2 116.7 106.6 3.8% 3.4%
Feedforward neural network LM [40] 141.8 114.8 105.2 4.2% 3.7%
Syntactical neural network LM 131.3 110.0 101.5 5.0% 4.4%
Recurrent neural network LM 124.7 105.7 97.5 5.8% 5.3%
Dynamically evaluated RNNLM 123.2 102.7 98.0 6.4% 5.100

Combination of dynamic RNNLMs 101.0 92.9 90.0 8.5% 6.9%
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What Issues Have DL Addressed?

* Hierarchical feature representation
Suitable for task

isl 7
:

[13]
Low-Level Feature Mid-Level Feature High-Level Feature
Adaptation technique CD-GMM-HMM CD-MLP-HMM CD-DNN-HMM
(40-mixture) (1 x 2,048) (7 x 2,048)
Speaker independent 23.6 % 24.2 % 17.1%
+ VTLN 21.5% (—9 %) 22.5% (—7 %) 16.8% (—2 %)
+ fMLLR/fDLR x4 20.4% (—5 %) 21.5% (—4 %) 16.4% (—2 %)

Kai Yu. Structured DL. MLSLP 16
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Deep Learning + Big Data
F End of SLT Research

* Real world data is always non-homogeneous

Structured Deep Learning
*  From data-driven to data+knowledge driven

Prior knowledge incorporation
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Part I
Multi-style and Context-aware
Training



What Issues DL Have Not Addressed?

Noise Robustness

Phone Discrimination

Device Type
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Acoustic Variabilities for AM

* Speech variability — desired
— Inherent variability related to what a speaker says

* Acoustic context variability — unwanted
— Speaker: male/female, accent, speaking rate, etc.
— Emotion: happy, fear, neutral, etc.
— Spontaneity: read, natural, spontaneous, etc.
— Environment: office, car, street, airport, etc.
— Channel: mobile, microphone, bluetooth, etc.

Kai Yu. Structured DL. MLSLP 16
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Linguistic Variabilities for LM

* Word variability — desired
— Inherent variability related to what a speaker says

* Linguistic context variability — unwanted
— Domain: news, science, novel, etc.
— Topic: politics, sports, family, technology, etc.
— Speaker role: child, parents, professional, etc.
— Emotion: sad, happy, disgust, etc.
— Dialogue: conversation history, search record, etc.

Kai Yu. Structured DL. MLSLP 16
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Context and Homogeneity

Effect

— Non-Targeted but Influential factors

Granularity
— Different from the primary variability

— Usually beyond local estimation

Prior knowledge is a special kind of context

— E.g. telephone number constraint, etc.

Context is also structured

— E.g. environment, speaker, channel have intersection

Kai Yu. Structured DL. MLSLP 16
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Context and Homogeneity

| | |
<= speaker 1 ['*., ]->:<- speaker 2 [ ".,]->: ------ :4- speaker N['~., ] -p

e Data within a homogeneous block share the same
context (concrete specific statistical property)

* Homogeneous block is dependent on context
 How to deal with non-homogeneity?
— Deep learning + big data?
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Multi-style Training with Big Data

Multi-style training
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* Train models on data with large variability as if they are e

“homogeneous”, i.e. ignore mismatch inside training data
* Rely on good model and big data coverage
* Big data # rich context
* Implicit context modelling has limitation
* Explicit modelling: adaptation and adaptive training
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Adaptation — No Change in Training

* Well-built model already exists

. Test
(HMM ModelHAdaptat'O” HAdapted Model] »Data

All Training Data Testset-specific Data

* Mode
— Supervised: annotations are available

— Unsupervised: only raw data is available
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Adaptive Training — Explicit Modelling of Context

Canonical Model M @)@8
| Acoustic Modelling as an
v v

+ Example
Transforms () ( )
T T T Training data is split
' ' homogeneous blocks
i i i (il 1 | " ‘ T T O = {()(1)7... ’()(S)}
| [ |
all speech segments from : : :
ker 2l ®*e. | ¥ sssuas speaker N| *«.,
speaker 1 ["~,] : PR [ .] : : " [ ]

* Speech and non-speech variability separately
modelled
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GMM-HMM Adaptive Training Techniques

* Feature Normalization
— Cepstral Mean and Variance Normalization
— Gaussianization
— Vocal Tract Length Normalization

* Model Adaptation

— Linear transform based (MLLR, CMLLR etc.)
— Cluster adaptive training

[15,16,17,18,19,20,21]
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Feature Normalization [15][16]
» Simplest form: CMN/CVN

6SMN(5) _ Ogs) 5(5) — O B ZO( s) 652\1(5) _ CMN(S)/

— Homogeneous block varies from utterance to
speaker or corpus

* Comparison to global CMN/CVN

— Each homogeneous block has different feature
transforms

— Normalize training and test data separately
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Part Il
Structured Deep Learning for
Context Awareness



Context-aware Deep Learning

* Re-training under context — Implicit modelling

Let the updated model be close to the original well-

trained model

— Additional Regularization
e Conservative training [22]
» KL-divergence regularization [23]

— Selective update
* Only update input/output layer [24]
* Update weights connected to maximum variance nodes [25]

* Structured deep learning — Explicit modelling

— Multi-view input with context representation
— Multi-task output with context target or constraint
— Structured model parameter to reflect context

Kai Yu. Structured DL. MLSLP 16
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Structured Input — Multi-view Techniques

* External context embedding as input

Estimate context representation using an external model

and augment feature with the context representation

— Speaker feature: i-vector [26], i-vector for LSTM [31]

— Environment-feature or combined:noise-energy [27], combined [28]
— Structured VAD [32]

* Internal trainable context embedding

Context representation is estimated using the same model

for speech recognition

— Speaker-code [29]
— Paragraph-vector [30]

Kai Yu. Structured DL. MLSLP 16
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I-Vector-based DNN Adaptation[26,33]
QOO0000 OO0
B
QOO0O000 0O
6. 18.9 29.0

PRRRRE cE g

+iVec 13.9 16.7

x5) [ wes)
I | | | = DNN 14.1 16.9 26.5
| 1 - Sequence
. +iVec 124 150  24.0
T —

Conversational Telephone Speech (English)

( |I-vector extraction]

i-Vector encapsulates all relevant information about a speaker’s identity in a low-
dimensional vector

i-Vector extraction is independent of DNN training

Speaker-level i-Vector is fed into DNN together with frame-level features as
augmented input features

Noise-vector (energy) can also be used in the framework [27]
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Factored DNN Adaptation [28]

(o]
senones
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[}
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Training or Testing Samples

* Factors are estimated separately from DNN
* Factor vectors fed to the softmax output layer

* Loading matrix (weights connected to acoustic
factor vectors) need to be estimated using
standard BP

Kai Yu. Structured DL. MLSLP 16

Factor vector estimation
e Joint factor analysis (JFA) [34]
e Vector Taylor Series (VTS) [35,36]

Aurora 4. Same Microphone

«c--@--- FDLR  ---ll--- JFA-style VTS-style
25
SN EE
< 23 s
ot CHOLT PO
i e, “
= 21 *
i
19
0 2 5 10 20
Number of adaptation utterances
Aurora 4. Microphone mismatch
42
a1 B;......... ...
X 40 e RIS ®-....
o 39 Weeeen....., TR IR a
= 38
37 “$
36
0 2 5 10 20

Number of adaptation utterances
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Speaker-aware training on LSTM-RNNs [31]

(a) (b) . G
/7 softmax N\ AT Lsimp

0 A ! A

LSTMP LSTMP LSTMP
A A A
LSTMP Sigmoid LSTMP LSTMP
A A A A
LSTMP LSTMP Sigmoid
I A 1 $ I A 1
Auxiliary info Input features Auxiliary info Input features Auxiliary info Input features
AMI ihm subset AMI ihm full set
LSTMP - 32.4 EFMLLR 26.0
_ (a) 1.1 + i-vector 24.3
t I-vector (b) 33.2 + BSV 25.0
(c) 34.5 + speaking rate 25.7
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Noise-aware VAD [32]

TRAINING TESTING

silence silence silence I

avi
wolding the posterior probabM

standard neural network

TEST SET NAT-DNN NAT-LSTM NAT-CNN

SEEN NOISE (3.52)->3.14 (3.15)->2.82 (5.05)->3.30
UNSEEN NOISE (11.19)->8.58 (9.24)->6.72 (9.76)->7.14
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RNN Language Model Adaptation[37]

Input layer Hidden layer Output layer

¥ i Unsupervised Topic f extraction:
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00Vimputnode |, Vil |——Pann | PLSA | b | 355 | o5 | 3108
Q ' : hyp | 133.7 || 1050 | 31.14
[ J
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Speaker Code for DNN Adaptation [29]

Ouiput Use 10 adaptation utterances for speaker code estimation
4 A
B ) w? Additional Training
a3) Data for Speaker Code
B T A O Connection
73
o 0 16.2
0(3)
2 A CE 10% 15.8
B T “ﬂ
- 100% 15.2
O
B! T 4 W 0 14.0
I Sequence 10% 13.7
Speaker Code (S) Input 100% 13.4

* Speaker code is a vector embedding speaker identity using DNN

* Speaker code and connection weights are randomly intialized and updated using
standard BP during training

 Smaller set of training data may be used to train B

 During adaptation, only the speaker code is updated on adaptation data and re-
decoding is then performed
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Paragraph Vector [30]

Distributed Memory Model

Paragraph Vector on

Q ‘ Q Softmax classifier
i

Average/Concatenate

000 000 000 00O

..

Sentence ID

e Paragraph matrix is shared for all words within the paragraph
e Standard BP training can be used to estimate paragraph vector
* Not used for language model adaptation yet.

Model Error rate | Error rate
(Positive/ (Fine-
Negative) grained)

Naive Bayes 18.2 % 59.0%

(Socher et al., 2013b)

SVMs (Socher et al., 2013b) 20.6% 59.3%

Bigram Naive Bayes 16.9% 58.1%

(Socher et al., 2013b)

Word Vector Averaging 19.9% 67.3%

(Socher et al., 2013b)

Recursive Neural Network 17.6% 56.8%

(Socher et al., 2013b)

Matrix Vector-RNN 17.1% 55.6%

(Socher et al., 2013b)

Recursive Neural Tensor Network 14.6% 54.3%

(Socher et al., 2013b)

Paragraph Vector 12.2% 51.3%

36
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Structured Output — Multi-task Training

* Multi-task training

Jointly estimate the target-of-interest and context-related

task, expecting context is embedded during deep feature extraction

— Multi-task training for text-dependent speaker verification
— Multi-task joint training for robust ASR

e Multi-view and multi-task combination

Reinforce context modelling by combining both input and

output context representation

— Multi-factor training for robust ASR

Kai Yu. Structured DL. MLSLP 16
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Multi-task Joint Learning for Robust ASR [40]

Cross-Entropy

(\\‘ 3000 | / ' Cross-Entropy
' 2048 ‘ output!: senone .
2048 Discriminative DNN 3000
2048 output2: feats
,\ e | 2048 2472792
T~ 72— L_ce 2048 2048
MSE frame splicing / delta L_mse
| M calculation / direct connection 2048 2048
24/72/792 \ 2048
| 2048 J L_share
! 2048 | Regressive DNN 2048 )
\ 2048 | \ 92
N 2 S Sysiem AT B [CT D [AG
Best GMM-HMM [9] |[[ 5.6 | 11.0 [ 8.8 [ 17.8 || 134
DNN NAT DP [10] 54| 83 |76 185 | 124
Aurora 4 Result DNN PP [15] 45| 75 |74 (193 || 123
Spectral Mask [27] 45179 (75177 | 114
System A|B|C| D |AVG INAT [14] 45| 74 81165 [ 111
Baseline 4618288 185 ) 124 TVWR Adap[6] | 44| 7.5 | 7.1 | 156 || 10.7
MT Joint Learning || 39 | 6.7 | 6.3 | 154 || 10.2 Joint FE BE [18] 44| 68 |64 | 154 | 103
+ NAT 3816560145 9.7 AD OSN LRF [19] 40| 7.2 |64 | 145 | 100
MT Joint-learning 38| 65 (60| 145 | 97
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Multi-factor Joint Training [41]

Far-Field ASR

Factor Extractor

i CE CE MSE ;

i Speaker :./"" oPhone-""\_ lean feats :

E sigmoid igmoid f

iSpeaker T Phone T Env * |

! Factor‘\ BN Factor BN Factor E

i sigmoid sigmoid #-i

i sigmoia sigmoid #—

i t 1 i

§ Far-Field Feats j
System |  Factor | Integration [ WER(%) |
DNN | — | — [ 632 |

Output 61.6

Speaker +X-connection 61.0

Output 614

MF-DNN Phone +X-connection 60.8

Output 61.2

Env +X-connection 60.7

Output 60.4

Spk-+Phn+Env +X-connection 60.1

Soltmax

]
f

f

sigmoid factor#1 factor#2 factor#3
sogmoid factor#1 factor#2 factor#3
exiractor extractor ctor
sigmoid 24 A4 ?
sigmoid
A
acoustic feals == auxiliary feats

Far-Field Feats

i-vector, T60, speaking rate, elc.

AMI Far-field Dataset

System Sub Set | Full Set
DNN 65.2 55.9
DNN-+i-vector 62.5 52.0
ME-DNN 60.1 535
MF-DNN-+i-vector 57.1 50.0
39
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Structured Model — Context-Specific Structure

* Context-specific linear transform

Apply speaker-specific linear transform to normalize

hierarchical deep features

— Input/output feature transform [42][43][46][47][49]
— Hidden layer feature transform [44][45]

* Explicit context-specific structure

Construct context specific subspace within deep learning

models

— Context-dependent layer [48]
— Additional or factorized structures [49][50][51][52][38]

Kai Yu. Structured DL. MLSLP 16 40



Transfer Linear Transform Adaptation to DNN

Apply context-specific linear transform to
normalize features of DNN

e Qutput feature discriminative
linear transform (oDLR) [42]
* Linear output network (LON) [43]

e SVD bottleneck adaptation [44]
* Linear hidden network [45]

* Feature discriminative linear
transform (fDLR) [46]
e Linear input network (LIN) [47,49]

Kai Yu. Structured DL. MLSLP 16 41



Adaptive Training with Context-specific Layer [48]

Split DNN into context-dependent and context-

independent layers and interleavingly update them

{W} * Regularization is required for
speaker-dependent layer update

R(A) = = HWZSD — Wres||” 4

5 [[bf, — b

lsp H2 (t:172737'°'7T)

e Performance

Ly L Ls Lg

SAT SAT
W; W

: s s 1 26.4 20.0 18.9
2 26.4 19.0 18.2
(b) 3 26.4 18.7 18.0
S
W2 4 26.4 19.0 18.4
Ly L Ly Ly Ls Lg
5 26.4 19.5 19.0

{828]{58}[282%}

WSAT Wmean WSAT Wsu
SAT S SAT
WS WS

TED Talks corpus, supervised adaptation
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Cluster Adaptive Training [49]

DNN
W yi=WwW%o,_; +b¥

D)
(5) e e 0 /1(51)
,. L J 0, =0(yp)
< : %AN
w(sh D)
W, CAT-DNN

(S)
Ol 1 ® o o ‘
T A=W e
0, =0(yp)
MO = [w .. w] mm
AGD = 26D . 26D ]T 15.8 19.9
+i- vector ; 100 14.8 18.3
P Na 2 2 15.2 18.8
WD = Z 280w H1 5 5 15.0 18.7
c=1 10 10 14.6 17.8
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Unsupervised Adaptation with Node
Co-activation Prior [38]

Node co-activation matrix: captures the correlational structure of nodes over time

T N
¢ 1 .
ct=Lyy?T = Db e
T r=14,j=1 A A

speech

speech + white noise (10dB)

HL
CR

activations (test
batch)

Y = HL activations
(test batch)
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Sequence summarizing [50]

[l s
Per-frame >'H ! Main 'f’
features ol p t
<@ AW Network m
. Sequence - AT a
P n L
n Summarizing : ' m |
m
" Neural . g 2
t
Network ;; e

Fig. 1. Topology of main-network with “sequence summary” input.
The summary is computed by Sequence Summarizing Neural Net-

work with sentence-averaging on the output.

30

[ Baseline, WER 24.2%
[ i-vector on DNN input, WER 23.8%

[0 SSNN averaging in DNN, WER 24.5%

| |
5-10s 10-25s

Sentence length
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Oyt = [Ou,t XU]T

Y

T
1 u

Xu(ou;eac) — T_ E Xu(ou;ezz:)
Yot=1

Sequence sum network
estimates utterance level
context representation

Joint training of summarizing
NN and main NN

Sequence level BP

Better for long sentence
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Context Modelling with Structured Learning

Information rate modelling

Easy prior knowledge incorporation
Explicit structure related to context effect
Unsupervised on-line context learning
Text based context modelling

46



Summary

* Context is the non-targeted but influential factors,
which may have different information rates

* Context modelling is an unsolved issue for DL
* Re-training under context — Implicit modelling
e Structured deep learning — Explicit modelling

Multi-view input with context representation
Multi-task output with context target or constraint

Structured model parameters to incorporate context
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