
Comparison of Distance Metrics for Phoneme Classification based on Deep
Neural Network Features and Weighted k-NN Classifier

Muhammad Rizwan & David V. Anderson

Georgia Institute of Technology
mrizwan@gatech.edu, anderson@gatech.edu

Abstract
K-nearest neighbor (k-NN) classification is a powerful and sim-
ple method for classification. k-NN classifiers approximate a
Bayesian classifier for a large number of data samples. The
accuracy of k-NN classifier relies on the distance metric used
for calculating nearest neighbor and features used for instances
in training and testing data. In this paper we use deep neural
networks (DNNs) as a feature extractor to learn discriminative
internal structure of the data. We compared different distance
metrics for calculating nearest neighbor in our speaker similar-
ity score algorithm for phoneme classification and their execu-
tion time. The city block distance metric is computationally
efficient and provides good phoneme classification accuracy.
Index Terms: Phoneme classification, feature learning, dis-
tance metrics

1. Introduction
The goal of a speech recognition system is to decode words for
a given acoustic waveform. This is achieved by splitting the
acoustic waveform into small fragments of speech known as
“frames.” Classifying these frames is known as phoneme clas-
sification. Thus, phoneme classification is the task of deciding
the phonetic identity of a very short speech utterance (frame)
[1]. The overall performance of a speech recognition system is
highly dependent on the accuracy of framewise phoneme clas-
sification. Improving the phoneme classification accuracy will
result in the overall improvement of speech recognition sys-
tem [2]. The difference between phoneme classification and
phoneme recognition is that in phoneme classification we clas-
sify phonemes on frame by frame basis while phoneme recog-
nition consists of identifying individual phonemes in a sentence
[3]. Dynamic programing techniques are used to convert the
phoneme classification to the phoneme recognition.

Recently deep neural networks (DNNs) have become pop-
ular in various signal processing applications because of their
strong ability to learn internal representation [4]. These
DNNs cannot be directly applied to speech recognition sys-
tems as DNNs require fixed size input while various samples of
phonemes/words are of variable length. In order to overcome
dynamic nature of the speech, hidden Markov models (HMMs)
are used. HMMs have strong sequential modeling capabilities.
HMMs require observation probabilities for a given acoustic
observation. These observation probabilities are estimated by
DNNs by using a softmax layer at the output, where each neu-
ron at the output layer corresponds to different phoneme class.
These observation probabilities are converted to scaled likeli-
hood by using Bayes theorem taking into account the prior prob-
ability of each phoneme class. HMMs use these scaled likeli-
hood to find the most probable sequence of phonemes. By using

lexicon and language models these phonemes are converted to
word sequences [5].

Authors in [2] trained bi-directional Long Short Term
Memory (LSTM) on the TIMIT database. They achieved a
phoneme classification accuracy of 69.5%. Steve Renals, et
al., applied radial basis functions (RBF) for phoneme classifica-
tion [6]. They varied the number of radial basis functions from
64 to 256 with input feature vector comprising three different
sets: cepstral coefficients, formants tracks (with frequency, am-
plitude, and bandwidth information), and bark-scaled formants
tracks. The best phoneme classification accuracy of 73.3% was
obtained using the cepstral coefficients with 256 radial basis
functions. The radial basis function–based phoneme classifi-
cation system training is two to three times faster than neu-
ral networks trained with the back-propagation algorithm [6].
In [7], they used histograms reconstruction phase space (RPS)
technique. They achieved an overall phoneme classification ac-
curacy of 61.59%, 34.49%, and 30.21% for fricatives, vow-
els, and nasals respectively. The advantage of using the re-
construction phase space technique over cepstral coefficients is
that it preserves non-linear information present in the speech
utterance. In [8], they combined cepstral features with the
RPS technique to achieve an overall classification accuracy of
57.85%. In [9], the author compared Gaussian mixture models
(GMMs) and HMMs for phoneme classification. He showed
that GMMs performed slightly better as compared with three–
state HMMs. The most specific phoneme information is in the
middle portion of the phoneme waveform. They achieved a
phoneme classification accuracy of 60.43% with 256 Gaussian
models. In [3], they used support vector machines (SVMs) and
achieved a classification accuracy of 71.4%. Through exper-
iments, they showed that better generalization performance is
achieved by using Gaussian kernel as compared with linear or
polynomial kernels. In [10], they learned distance metric for
k-NN based phonetic frame classification and obtained an ac-
curacy of 63.3%.

Current speech recognition systems are based on HMMs.
HMMs have inherent deficiencies and weaknesses because of
data generalization. In data generalization, original data is not
retained, but rather approximated by statistical models. Vari-
ous attempts have been made to overcome these problems by
using all information from the data and building local models
in original representation space [11, 12, 13, 14, 15]. This paper
is an extension of our previous work on phoneme classification
based on k-NN that utilizes all the information available with
the speech utterance. In [16], we used k-NNs to learn a simi-
larity score of a target speaker with speakers in our training set.
We then used the speaker similarity score to weight k-NN for
phoneme classification. In [17], we trained different DNNs ar-
chitectures for feature learning and tested our speaker similarity

score based approach on DNN features. In this paper we inves-
tigate various distance metrics and their computation time for
our speaker similarity score based approach for phoneme clas-
sification. The outline of the paper is as follows. In Section
2, we discuss k-nearest neighbor and various distance metrics.
Section 3 presents our speaker similarity score based phoneme
classification method. In Section 4 we present the experimental
results. Section 5, we discuss the conclusion of this paper and
future work.

2. K-Nearest Neighbor
K-nearest neighbor (k-NN) is one of the most popular and
simple supervised learning algorithms used in various pattern
recognition and classification problems. The rationale behind
k-NN is that the class of a query data instance (testing data)
should be the same as the class of the nearest instance from the
training data (instance space) or the majority of the nearest k
instances. k-NN is non-parametric and does not require fitting
a model [18]. Because of its non-parametric nature it does not
generalize training samples with statistical models. This helps
in doing fine comparison between training samples and incom-
ing data samples and results in better classification performance
[16]. Despite its simplicity, it works reasonably well with differ-
ent types of data. The asymptotic error rate of k-NN approaches
the optimal Bayes error rate, when the number of training sam-
ples N and the number of of neighbors k tend to infinity [19].

During the learning process, k-NN stores the entire collec-
tion of training samples along with class label information. In
order to classify query data instance (testing data), the distance
between query data and training samples is calculated based on
some distance metric. Based on the value of “k”, samples with
least distances are selected, and the decision is made using some
decision rule [20]. Thus, k-NN classification performance is de-
pendent on:

• Input features
• Decision rule
• Distance metric
• Value of “k”
The k-NN has an inherent assumption that two instances

that are close in space are likely to belong to the same class.
But in reality this does not hold for most of the datasets [21].
The performance of k-NN can be improved by feature learn-
ing, clever decision rules, finding the appropriate distance met-
ric, and experimenting with different values of “k”. In our
method (Section 3), we have used DNNs for feature learning
and weighted our decision by learning speaker similarity score.
We compared performance by varying value of “k” and distance
metrics mentioned in Table 1 below, where x is the feature vec-
tor in m dimensional space, s represents query point, t rep-
resents point from the instance space, x̃s =

1
m

∑m
j=1 xsj, and

x̃t =
1
m

∑m
j=1 xtj .

3. Method
Our speaker similarity score algorithm consists of three main
steps. First, we train a DNN using a back-propagation algorithm
to learn optimal DNN weights. After the DNN has been trained,
we removed the output layer. The input vector we use consists
of 13 Mel-frequency cepstral coefficients along with the first
and second temporal differences (the deltas and delta-deltas) as
input. The outputs of hidden layer are used as features. In the
second step, we learned a speaker similarity score of the target
speaker with the speakers in our instance space (training data).

Table 1: Distance Metrics for kNN

Distance Equation

Euclidean d =
√∑n

j=1(xsj − xtj)2

City
Block d =

∑n
j=1 |xsj − xtj|

Chebyshev d = maxj

{
|xsj − xtj|

}
Cosine d = 1−

∑n
j=1 xsjxtj√∑n

j=1
xsjxsj

√∑n
j=1

xtjxtj

Correlation d = 1− (xs−x̃s)(xt−x̃t)
′√

(xs−x̃s)(xs−x̃s)′
√

(xt−x̃t)(xt−x̃t)′

Finally, we weight our k-NN decision by the target speaker sim-
ilarity score for phoneme classification decision. For details re-
garding the speaker similarity score algorithm, see [16, 17].

3.1. Feature Learning using DNN

By using a DNN for feature learning one can discover abstrac-
tions from low-level features to high-level concepts with very
little human effort. These algorithms can learn non-linear math-
ematical models with multivariate statistics related to each other
by intricate statistical relationship [4]. A typical architecture
of deep neural network consists of an input layer, hidden lay-
ers, and output layer. The features learned using DNNs tend
to eliminate irrelevant variabilities of raw input data and at the
same time preserve information that is useful for classification.
Deep neural network training is performed by maximizing the
log posteriori probability over the training frames [22]. Maxi-
mizing the log posteriori probability is equivalent to minimizing
the cross-entropy objective function given by Eq. 1.

E(w) = −
N∑

n=1

K∑
k=1

Tkn lnYk(Xn, w) (1)

where Yk is the network output, Xn is input to the network, w
are the weights, Tkn is true value (one for correct class and zero
for all others), K is the number of phoneme classes at output,
N is the number of input samples. A sigmoid is used as a non-
linear activation function. a soft-max layer is used at the output
for assigning probabilities to each phoneme class and is given
by Eq. 2.

fi(Z) =
exp(Zi)∑K

k=1 exp(Zk)
, i = 1, 2, ..,K (2)

Once the deep neural network is trained using back-
propagation, we remove the soft-max layer. The data after the
hidden layer activations are used as features.

3.2. Learning Speaker Similarity Score

We used a k-NN classifier to find the speaker similarity score
for a target speaker with speakers in training data. The in-
stance space of k-NN comprises phonemes from various sen-
tences and speakers. For each instance in our training data we
have phoneme label and speaker information available. We use
some portion of the labeled data from the target speaker to find
k-nearest phonemes from our instance space. For each correct

match of the phoneme, we will find corresponding speakers for
that correct match in our instance space. We then increment the
score of that particular speaker by one. In this way we will use
all the phonemes from the target speaker to find score of the
speakers in our training data. The greater the score of a partic-
ular speaker in our training data, the more similar it is to the
given target speaker.

3.3. Phoneme Classification

In our algorithm we use speaker similarity score information
that we learned for our target speaker to weight our decision for
phoneme classification. For a phoneme acoustic frame from the
target speaker we found the k-nearest neighbors in the instance
space using the distance metric. From these “k” nearest neigh-
bor phonemes we will find the corresponding speakers. For
each phoneme represented among the k-nearest neighbors, the
corresponding speaker similarity scores are added. The classi-
fier then assigns a label to the acoustic frame according to which
of the represented phonemes has the highest score.

4. Results
4.1. Dataset

The dataset used in our experiment is TIMIT [23], which con-
sists of 630 speakers from eight different dialect regions of
United States. For each speaker we have ten utterances (2-SA,
5-SX and 3-SI). We divided the dataset into training, validation,
and testing data. Training data consists of utterances from SX
and SI. We used these utterances (SX and SI) to train DNN. Our
instance space for k-NN also comprises utterances from SX and
SI. Testing data consists of 24 speakers (3 speakers from each
dialect region). We used random 4 utterances from each speaker
to learn speaker similarity score and tested our approach on ran-
dom 4 utterances. We used 39 phoneme classes.

4.2. Experiment

For feature learning we trained a DNN with two hidden lay-
ers. Hidden layer 1 has 1000 neurons. We varied the number
of neurons in the second layer from 50 to 1000. DNN with
250 neurons in second hidden layer gives the best result. Re-
sults reported in this paper are based on DNN with 250 neu-
rons in the second hidden layer. The speaker similarity score
algorithm involves a training phase and a testing phase. In the
training phase, speaker similarity scores are learned using k-NN
for a target speaker and in the testing phase, based on the target
speaker similarity score, phoneme classification is done using
k-NNs with neighbors weighted according to their speaker sim-
ilarity score.

4.3. Comparison of Distance Metrics

In this experiment we compared distance metrics mentioned in
Section 2 for our speaker similarity score algorithm for differ-
ent values of “k”. Increasing the value of “k” improves the
phoneme classification performance. The best performance is
achieved by using Euclidean distance metric. The classification
accuracy achieved by using city block distance metric is very
close to Euclidean distance. Both Euclidean and city block dis-
tance metrics are a special cases of Minkowski distance metric.
Minkowski distance between two points a and b in D dimen-

sional space is given by:

d(a, b) = m

√√√√ D∑
j=1

|aj − bj | (3)

where m = 1 and m = 2 for city block and Euclidean distance
metrics respectively. As we increase m it gives more emphasis
to large differences in individual dimensions. Fig. 1 shows the
comparison of distance metrics.

k=10 k=20 k=30 k=40 k=50
Value of "k"

60

62

64

66

68

70

Ph
on

em
e

cl
as

sif
ic

at
io

n
ac

cu
ra

cy

Euclidean
Cityblock
Chebyshev
Cosine
Correlation

Figure 1: Comparison of distance metrics

4.4. Comparison of Execution Time

The distance metric has a significant impact on the execution
time of our speaker similarity score algorithm. The city block
distance metric requires less execution time for similarity score
calculation and phoneme classification as compare with Eu-
clidean distance metric. Fig.2 shows the speed up comparison
of the city block, Chebyshev, cosine, and correlation with Eu-
clidean distance metric.

Similarity score Phoneme classification
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sp
ee
du
p

Euclidean
Cityblock
Chebyshev
Cosine
Correlation

Figure 2: Comparison of execution time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Speaker IDs

60

62

64

66

68

70

72

74

76

78

Ph
on

em
e

cl
as

sif
ic

at
io

n
ac

cu
ra

cy
 (%

)
Euclidean
Cityblock
Chebyshev
Cosine
Correlation

Figure 3: Variation in value of “k” per speaker

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Speaker IDs

58

60

62

64

66

68

70

72

74

76

78

Ph
on

em
e

cl
as

sif
ic

at
io

n
ac

cu
ra

cy
 (%

)

k=10
k=20
k=30
k=40
k=50

Figure 4: Comparison of distance metrics per speaker

4.5. Speaker wise comparison

In this experiment, we compared variation in value of “k” and
distance metrics on individual speaker performance. Increase in
value of “k” improves the phoneme classification performance,
but as we increase “k” it requires more computation time. In
terms of distance metric, the city block works well with most of
the speakers. Figs. 3 and 4 shows the comparison of phoneme
classification accuracy with distance metrics and value of “k”
for 24 different speakers.

5. Conclusions and Future Work
In this paper we compared distance metrics for our speaker
similarity score algorithm. Our speaker similarity algorithm is
based on k-NNs and features learned through DNN. City block
distance metric is computationally efficient and at the same time
provides good phoneme classification accuracy. In future work,
we are investigating on learning distance metrics based on the
internal structure of the data and applying clustering methods to
partition instance space into different groups when there is no
speaker information available.

6. References
[1] O. Dekel, J. Keshet, and Y. Singer, “An online algorithm for hier-

archical phoneme classification,” in Machine Learning for Multi-
modal Interaction. Springer, 2004, pp. 146–158.

[2] A. Graves and J. Schmidhuber, “Framewise phoneme classifi-
cation with bidirectional LSTM networks,” in Neural Networks,
2005. IJCNN., International Joint Conference on, vol. 4. IEEE,
2005, pp. 2047–2052.

[3] J. Salomon, “Support vector machines for phoneme classifica-
tion,” Master of science, School of Artificial Intelligence, Univer-
sity of Edinburgh, 2001.

[4] Y. Bengio, “Learning deep architectures for AI,” Foundations and
trends® in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[5] H. A. Bourlard and N. Morgan, Connectionist speech recognition:
a hybrid approach. Springer Science & Business Media, 2012,
vol. 247.

[6] S. Renals and R. Rohwer, “Phoneme classification experiments
using radial basis functions,” in Neural Networks, 1989. IJCNN.,
International Joint Conference on. IEEE, 1989, pp. 461–467.

[7] J. Ye, R. J. Povinelli, and M. T. Johnson, “Phoneme classifica-
tion using naive Bayes classifier in reconstructed phase space,”
in Digital Signal Processing Workshop, 2002 and the 2nd Signal
Processing Education Workshop. Proceedings of 2002 IEEE 10th.
IEEE, 2002, pp. 37–40.

[8] M. T. Johnson, R. J. Povinelli, A. C. Lindgren, J. Ye, X. Liu,
and K. M. Indrebo, “Time-domain isolated phoneme classification
using reconstructed phase spaces,” Speech and Audio Processing,
IEEE Transactions on, vol. 13, no. 4, pp. 458–466, 2005.

[9] M. Antal, “Speaker independent phoneme classification in con-
tinuous speech,” Studia Univ. Babes-Bolyai Informatica, vol. 49,
no. 2, pp. 55–64, 2004.

[10] J. Labiak and K. Livescu, “Nearest neighbors with learned dis-
tances for phonetic frame classification.” in INTERSPEECH,
2011, pp. 2337–2340.

[11] T. Deselaers, G. Heigold, and H. Ney, “Speech recognition with
state-based nearest neighbour classifiers.” in INTERSPEECH.
Citeseer, 2007, pp. 2093–2096.

[12] M. De Wachter, M. Matton, K. Demuynck, P. Wambacq, R. Cools,
and D. Van Compernolle, “Template-based continuous speech
recognition,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 15, no. 4, pp. 1377–1390, 2007.

[13] N. Singh-Miller and M. Collins, “Learning label embeddings for
nearest-neighbor multi-class classification with an application to
speech recognition,” in Advances in Neural Information Process-
ing Systems, 2009, pp. 1678–1686.

[14] L. Golipour and D. D. O’Shaughnessy, “Phoneme classifica-
tion and lattice rescoring based on a k-nn approach.” in INTER-
SPEECH, 2010, pp. 1954–1957.

[15] T. N. Sainath, B. Ramabhadran, D. Nahamoo, D. Kanevsky,
D. Van Compernolle, K. Demuynck, J. F. Gemmeke, J. R. Belle-
garda, and S. Sundaram, “Exemplar-based processing for speech
recognition: An overview,” IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 98–113, 2012.

[16] M. Rizwan and D. V. Anderson, “Using k-Nearest Neighbor and
Speaker Ranking for Phoneme Prediction,” in Machine Learning
and Applications (ICMLA), 2014 13th International Conference
on. IEEE, 2014, pp. 383–387.

[17] ——, “Speaker adaptation using speaker similarity score on DNN
features,” in 2015 IEEE 14th International Conference on Ma-
chine Learning and Applications (ICMLA). IEEE, 2015, pp.
877–882.

[18] R. Min, D. A. Stanley, Z. Yuan, A. Bonner, and Z. Zhang, “A deep
non-linear feature mapping for large-margin k-NN classification,”
in Data Mining, 2009. ICDM’09. Ninth IEEE International Con-
ference on. IEEE, 2009, pp. 357–366.

[19] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification.
John Wiley & Sons, 2012.

[20] J. Gou, L. Du, Y. Zhang, T. Xiong et al., “A new distance-
weighted k-nearest neighbor classifier,” J. Inf. Comput. Sci, vol. 9,
no. 6, pp. 1429–1436, 2012.

[21] W. Ren, Y. Yu, J. Zhang, and K. Huang, “Learning convolutional
nonlinear features for k nearest neighbor image classification,”
in 2014 22nd International Conference on Pattern Recognition
(ICPR). IEEE, 2014, pp. 4358–4363.

[22] Z. Huang, J. Li, C. Weng, and C.-H. Lee, “Beyond cross-entropy:
towards better frame-level objective functions for deep neural
network training in automatic speech recognition.” in INTER-
SPEECH, 2014, pp. 1214–1218.

[23] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, and D. S.
Pallett, “DARPA TIMIT acoustic-phonetic continous speech cor-
pus CD-ROM. NIST speech disc 1-1.1,” NASA STI/Recon techni-
cal report n, vol. 93, 1993.

