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Introduction and Motivation



Automatic Speech Recognition

Input
I Acoustic signal

Output
I Word transcription
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State-of-the-Art ASR is Complicated

I Signal Processing
I Pronunciation Dictionary
I GMM-HMM
I Context-Dependent Phonemes
I DNN Acoustic Model
I Sequence Training
I Language Model

I Many proxy problems, (mostly) independently optimized
I Disconnect between proxy problems (i.e., frame accuracy) and

ASR performance
I Sequence Training solves some of the problems
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HMM Assumptions

I Conditional independence between frames/symbols
I Markovian
I Phonemes

I We make untrue assumptions to simply our problem
I Almost everything fallback to the HMM (and phonemes)
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Goal: Model Characters directly from Acoustics

Input
I Acoustic signal (e.g., filterbank spectra)

Output
I English characters

I Don’t make assumptions about the our distributions
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End-to-End Model

I Signal Processing
I Listen, Attend and Spell (LAS)
I Language Model?

I One model optimized end-to-end
I learn pronunciation, acoustic, dicationary all in one end-to-end

model
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Model: Listen, Attend and Spell



Sequence-to-Sequence (and Attention)

Machine Translation:
I Sutskever et al., “Sequence to Sequence Learning with Neural

Networks,” in NIPS 2014.
I Cho et al., “Learning Phrase Representations using RNN

Encoder-Decoder for Statistical Machine Translation,” in
EMNLP 2014.

I Bahdanau et al., “Neural Machine Translation by Jointly
Learning to Align and Translate,” in ICLR 2015.

TIMIT:
I Chorowski et al., “Attention-Based Models for Speech

Recognition,” in NIPS 2015.
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Listen, Attend and Spell

Let x be our acoustic features, and let y be the sequence we are
trying to model (i.e., character sequence):

h = Listen(x) (1)
P (yi|x, y<i) = AttendAndSpell(y<i,h) (2)
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Implicit Language Model

I HMM/CTC have conditional independence assumption
I seq2seq models have a conditional dependence on the

previously emitted symbols:

P (yi|x, y<i) (3)
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Listen, Attend and Spell

I Listen(x) can be a RNN (i.e., LSTM).
I Transform our input features x into some higher level feature h

I AttendAndSpell is an attention-based RNN decoder.
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Listen, Attend and Spell

AttendAndSpell is an attention-based RNN decoder:

ci = AttentionContext(si,h) (4)
si = RNN(si−1, yi−1, ci−1) (5)

P (yi|x, y<i) = CharacterDistribution(si, ci) (6)

The AttentionContext creates an alignment and context for each
timestep:

ei,u = 〈φ(si), ψ(hu)〉 (7)

αi,u = exp(ei,u)∑
u′ exp(ei,u′) (8)

ci =
∑
u

αi,uhu (9)
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Listen, Attend and Spell
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Listen, Attend and Spell

I Attention mechanism creates a short circuit between each
decoder’s output and the acoustic

I More efficient information/gradient flow!
I Creates an explicit alignment between each character and the

acoustic features
I CTC’s alignment is latent
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Listen, Attend and Spell

I Model works but...
I Takes “forever” to train, after > 1 month model still not

converged : (
I WERs in the >20s (CLDNN-HMM is 8ish)
I Attention mechanism must focus on a long range of frames
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Pyramid
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Pyramid

I Build higher level features with each layer
I Reduce number of timesteps for attention to attend to
I Computational efficiency
I 8 filterbank frames → 1 pyramid frame feature

hji = pBLSTM(hji−1,
[
hj−1

2i , hj−1
2i+1

]
) (10)
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Pyramid

1. Sequence-to-Sequence
2. Attention
3. Pyramid

I 16 to 20-ish WERs (w/o LM)
I Takes around 2-3 wks to train, overfitting a HUGE problem
I Mismatch between train and inference conditions
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Sampling Trick

Machine Translation, Image Captioning and TIMIT:
I Bengio et al., “Scheduled Sampling for Sequence Prediction

with Recurrent Neural Networks,” in NIPS 2015.
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Sampling Trick

I Training is conditioned on ground truth
I We don’t have access to ground truth during inference!

max
θ

∑
i

logP (yi|x, y∗
>i; θ) (11)
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Sampling Trick

I Sample from our model
I Condition on sample for next step prediction

ỹi ∼ CharacterDistribution(si, ci) (12)

max
θ

∑
i

logP (yi|x, ỹ>i; θ) (13)
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Listen, Attend and Spell

P (y|x) =
∏
i

P (yi|x, y<i) (14)

h = Listen(x) (15)
P (y|x) = AttendAndSpell(h,y) (16)

Carnegie Mellon University 25



Language Model Rescoring

I Leverage on vast quantities of text!
I Normalize our LAS model by number of characters in

utterance – LAS has bias for short utterances.

s(y,x) = logP (y|x)
|y|c

+ λ logPLM(y) (17)
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Experiments and Results



Dataset

I Google voice search
I 2000 hrs, 3M training utterances
I 16 hrs, 22K test utterances
I Mixed Room Simulator, artificially increase acoustic data by

x20 (i.e., YouTube and environmental noise)
I Clean and noisy test set
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Training

I Stochastic Gradient Descent
I DistBelief 32 replicas, minibatch size of 32
I 2-3 weeks of training time
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Results

Model Clean WER Noisy WER
CLDNN-HMM (Tara et al., 2015) 8.0 8.9
LAS 16.2 19.0
LAS + LM 12.6 14.7
LAS + Sampling 14.1 16.5
LAS + Sampling + LM 10.3 12.0
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Decoding

I We didn’t decode with a dictionary!
I LAS implicitly learnt the dictionary during training
I Rare spelling mistakes!

I We didn’t decode with a LM! (only rescored)
I n-best list decoding where n = 32

I CLDNN-HMM is convolutional and unidirectional, LAS is not
convolutional and bidirectional
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Decoding
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Decoding

I 16% WER without any searching (and LM) - just take the
greedy path!

I LAS does “reasonably” well even with n = 4 in n-best list
decoding

I Not much to gain after n > 16
I LM rescoring recovers less than 1/2 of the oracle – need to

improve LM?
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Results: Triple A

N Text logP WER
Truth call aaa roadside assistance - -
1 call aaa roadside assistance -0.57 0.0
2 call triple a roadside assistance -1.54 50.0
3 call trip way roadside assistance -3.50 50.0
4 call xxx roadside assistance -4.44 25.0
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Conclusion



Conclusion

I Listen, Attend and Spell (LAS)
I End-to-end speech recognition model
I No conditional independence, Markovian assumptions, or proxy

problems
I Sequence-to-Sequence + Attention + Pyramid
I One model: integrate all traditional components of an ASR

system into one model (acoustic, pronunciation, language,
etc...)

I Competitive to state-of-the-art CLDNN-HMM system
I 10.3 vs. 8.0 WER

I Time to throw away HMM and phonemes!
I Independently proposed by Bahandau et al., 2016 on WSJ

(next next talk, checkout their paper too!)
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