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Abstract
While sentence embeddings or sentence representations
play a central role in recent deep learning approaches to
NLP, little is known about the information that is captured
by different sentence embedding learning mechanisms.
We propose a methodology facilitating fine-grained mea-
surement of some of the information encoded in sentence
embeddings, as well as performing fine-grained compar-
ison of different sentence embedding methods.

In sentence embeddings, sentences, which are
variable-length sequences of discrete symbols, are en-
coded into fixed length continuous vectors that are then
used for further prediction tasks. A simple and common
approach is producing word-level vectors using, e.g.,
word2vec [1, 2], and summing or averaging the vectors of
the words participating in the sentence. This continuous-
bag-of-words (CBOW) approach disregards the word or-
der in the sentence. Another approach is the encoder-
decoder architecture, producing models also known as
sequence-to-sequence models [3, 4, 5]. In this archi-
tecture, an encoder network (e.g. an LSTM) is used to
produce a vector representation of the sentence, which is
then fed as input into a decoder network that uses it to
perform some prediction task (e.g. recreate the sentence,
or produce a translation of it). The encoder and decoder
networks are trained jointly in order to perform the final
task.

Some systems (for example in machine translation)
train the system end-to-end, and use the trained system
for prediction [5]. Such systems do not generally care
about the encoded vectors, which are used merely as in-
termediate values. However, another common case is to
train an encoder-decoder network and then throw away
the decoder and use the trained encoder as a general
mechanism for obtaining sentence representations. For
example, an encoder-decoder network can be trained as
an auto-encoder, where the encoder creates a vector rep-
resentation, and the decoder attempts to recreate the orig-
inal sentence [6]. Similarly, in [7] the authors train a
network to encode a sentence such that the decoder can
recreate its neighboring sentences in the text. Such net-

works do not require specially labeled data, and can be
trained on large amounts of unannotated text. As the de-
coder needs information about the sentence in order to
perform well, it is clear that the encoded vectors capture
a non-trivial amount of information about the sentence,
making the encoder appealing to use as a general purpose,
stand-alone sentence encoding mechanism. The sentence
encodings can then be used as input for other prediction
tasks for which less training data is available [8]. In this
work we focus on these “general purpose” sentence en-
codings.

The resulting sentence representations are opaque,
and there is currently no good way of inspecting different
representations short of using them as input for differ-
ent high-level semantic tasks (e.g. sentiment, entailment,
document retrieval, question answering, sentence similar-
ity, etc.) and measuring how well they perform on these
tasks. This is the approach taken by [6], [9] and [7]. This
method of comparing sentence embeddings leaves a lot
to be desired: the comparison is at a very coarse-grained
level, does not tell us much about the kind of information
that is encoded in the representation, and does not help us
form generalizable conclusions.

Our Contribution We take a first step towards open-
ing the black box of vector embeddings for sentences.
We propose a methodology that allows to investigate sen-
tence embeddings on a much finer-grained level, and
demonstrate its use by analyzing and investigating dif-
ferent sentence representations. We investigate sen-
tence representation methods that are based on LSTM
auto-encoders, the skip-thought embeddings of [7], and
the simple CBOW representation produced by averaging
word2vec word embeddings. For the LSTM and CBOW
embeddings, we compare different dimensions, exploring
the effect of the dimensionality on the resulting represen-
tation.

The main idea of our method is to focus on isolated
aspects of sentence structure, and design experiments to
measure to what extent each aspect is captured in a given
representation. In each experiment, we formulate a pre-



diction task. Given a sentence representation method, we
create training data and train a classifier to predict a spe-
cific sentence property (e.g. their length) based on their
vector representations. We then measure how well we can
train a model to perform the task. The basic premise is
that if we cannot train a classifier to predict some property
of a sentence based on its vector representation, then this
property is not encoded in the representation (or rather,
not encoded in a useful way, considering how the rep-
resentation is likely to be used). The tasks are designed
such that it is easy to produce an unlimited amounts of
training and test data from raw, unannotated text.

In this work, we focus on what are arguably the three
most basic characteristics of a sequence: its length, the
items within it, and their order. While these are rather
low-level properties, our analysis already leads to inter-
esting, actionable insights, such as:

• LSTM auto-encoders are very effective at encod-
ing word order information, and less so at encoding
word content.

• Increasing the dimensionality of the LSTM en-
coder does not significantly improve its ability to
encode length, but does increase its ability to en-
code word content and word order information.

• 500 dimensional embeddings are already quite ef-
fective for encoding word order, with little gains
beyond that.

• Word content accuracy peaks at 750 dimensions
and drops at 1000, suggesting that larger is not al-
ways better.

• The trained LSTM encoder (when trained with an
auto-encoder objective) does not rely on ordering
patterns in the training sentences when encoding
them. The skip-thought encoder does rely on such
patterns.

• The encoder-decoder’s ability to recreate sentences
(BLEU) is not entirely indicative of the quality of
the encoder at representing aspects such as word
identity and order.

Generalizing the approach to higher-level semantic
and syntactic properties holds great potential, which we
hope will be explored in future work, by us or by others.
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