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 Neural methods have transformed machine
translation

* Neural Machine Translation (NMT) systems
are typically based on sequence-to-sequence
models with attention

 Today we’ll describe a number of
enhancements/modifications that improve

translation quality
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Attention for NMT

* Luong et al. (2015) simplify & generalize the
model of Bahdanau, and compare different
ways of defining attention

“Effective Approaches to Attention-based Neural Machine Translation”
Luong et al. (2015)



Simplifying Attention for NMT
]
Same in both: ¢t = Z atth

u=1
Bahdanau et al. (simplified a bit for clarity):
s’ = tanh (V[/(y)yt_1 +WEst=L pwleet 4 b(s))

y' = argmax (emb(y) ' [s*; c'])
yeO

Luong et al.:

. .. >
st just comes from decoder RNN How is this simpler:

5" = tanh (W(C) ' st])

y' = argmax (emb(y)Tét)
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Attention Functions

Bahdanau et al.: Luong et al.:

ol oc exp{att(s'~ h")} o' oc expatt(s’, h")}
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Global Attention
global = computed over all hidden vectors of input

Context vector

Global align weights

Figure 2: Global attentional model — at each time

step ¢, the model infers a variable-length align-

ment weight vector a; based on the current target

state h, and all source states h,. A global context

vector ¢; is then computed as the weighted aver- Luong et al. (2015)
age, according to ay, over all the source states.



Global Content-Based Attention Functions

global = computed over all hidden vectors of input
content-based = attention function looks at source
hidden vectors

dot product (“dot”): att(s’,h*) = s* h"
bilinear (“general”): att(s', h") = st W@ pu
feed-forward (“concat”): att(s’, h") = w(“)T[st, h"]

parameter vector

Luong et al. (2015)



Global Location-Based Attention Function

global = computed over all hidden vectors of input
location-based = attention function does not look
at source hidden vectors themselves, just positions:

att(s',u) = st w(®)

\

parameter vector
for position u in
source sentence

Luong et al. (2015)



Results

System Ppl | BLEU
global (location) 6.4 18.1
global (dot) 6.1 18.6
global (general) 6.1 17.3

feed-forward (“concat”) did not work well!

Luong et al. (2015)
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Local Attention
local = computed over a subset of input hidden vectors

at decoder step ¢, i
find position p; in source
sentence,

Context vector

Aligned position

compute attention over a
window centered at that
Figure 3: Local attention model — the model first

position In the source predicts a single aligned position p; for the current

t target word. A window centered around the source
sentence position p; is then used to compute a context vec-
tor ¢;, a weighted average of the source hidden
states in the window. The weights a; are inferred
from the current target state h; and those source
14 states hg in the window.



Local Attention

local-m: set p; = ¢, assumes roughly monotonic
alignment between decoder positions and source

sentence positions
local-p: predict p; based on decoder hidden state

and some additional parameters ye

Attention Layer

Context vector

Aligned position

Luong et al. (2015)
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Results

System Ppl | BLEU
global (location) 6.4 | 18.1
global (dot) 6.1 18.6
global (general) 6.1 | 17.3
local-m (dot) >7.0 X
local-m (general) 6.2 18.6

Table 4: Attentional Architectures — perfor-
mances of different attentional models. We trained
two local-m (dot) models; both have ppl > 7.0.

“Effective Approaches to Attention-based Neural Machine Translation”
Luong et al. (2015)



Results

System Ppl | BLEU
global (location) 6.4 | 18.1
global (dot) 6.1 18.6
global (general) 6.1 | 17.3
local-m (dot) >7.0 X
local-m (general) 6.2 18.6
local-p (dot) 6.6 | 18.0

local-p (general) 3.9 19

Table 4: Attentional Architectures — perfor-
mances of different attentional models. We trained
two local-m (dot) models; both have ppl > 7.0.

“Effective Approaches to Attention-based Neural Machine Translation”
Luong et al. (2015)



“Input Feeding” of Decoder Hidden States

X Y Z <eos>

hy

Attention Layer

A B C D <eos> X Y Z

Figure 4: Input-feeding approach — Attentional
vectors h; are fed as inputs to the next time steps to
inform the model about past alignment decisions.

Luong et al. (2015)
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Modeling Coverage

e NMT sometimes doesn’t translate all source words,
or translates them multiple times

“Modeling Coverage for Neural Machine Translation”
Tu et al. (2016)



closed
close
<eos>
were
forced
close
down
<eos>
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(a) Over-translation and under-translation (b) Coverage model alleviates the problems of
generated by NMT. over-translation and under-translation.

Figure 1: Example translations of (a) NMT without coverage, and (b) NMT with coverage. In conven-
tional NMT without coverage, the Chinese word “guanbi” is over translated to “close(d)” twice, while
“beipo” (means “be forced to”) is mistakenly untranslated. Coverage model alleviates these problems by
tracking the “coverage™ of source words.

“Modeling Coverage for Neural Machine Translation” Tu et al. (2016)



Results: Modeling Coverage
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Figure 6: Performance of the generated translations with respect to the lengths of the input sentences.
Coverage models alleviate under-translation by producing longer translations on long sentences.

“Modeling Coverage for Neural Machine Translation”
Tu et al. (2016)



Inference



Beam Search

e to find a translation, greedy search just picks
most-probable word at each position

* but does this give us any guarantees about the
entire translation?

 beam search can be used to approximately
find the most-probable complete translation



Beam Search

Let beam size = 2:

0.4

at

“Chat Smarter with Allo”
Pranav Khaitan, Google Research Blog

here

24



Learning



Concern

e there’s a mismatch between training and test!
 (what is it?)



Scheduled Sampling
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Figure 2: Examples of decay

Figure 1: Illustration of the Scheduled Sampling approach, schedules.
where one flips a coin at every time step to decide to use the
true previous token or one sampled from the model itself.

“Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks”
Bengio et al. (2015)



Scheduled Sampling Results

Table 2: F1 score (the higher the better) on the validation set of the parsing task.

Approach Fl

Baseline LSTM 86.54

Baseline LSTM with Dropout 87.0
Always Sampling -
Scheduled Sampling 88.08
Scheduled Sampling with Dropout | 88.68

“Always Sampling” did not work well!

“Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks”
Bengio et al. (2015)



