TTIC 31210:

Advanced Natural Language Processing

Kevin Gimpel Spring 2017

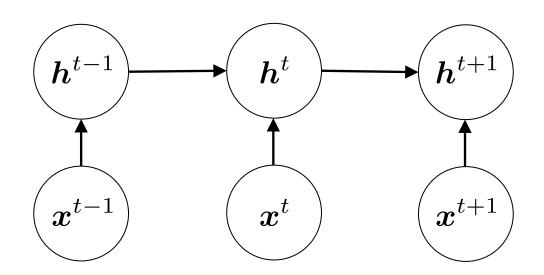
Lecture 8:

Neural Machine Translation

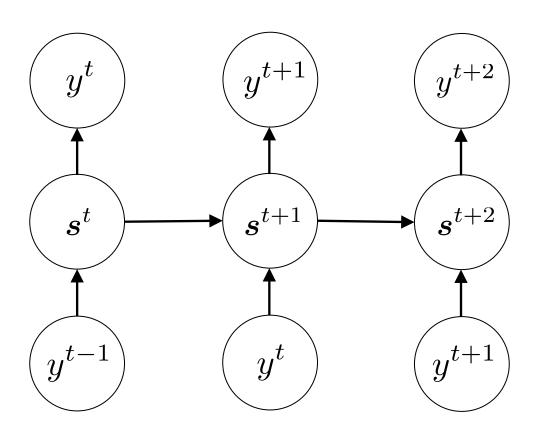
- Neural methods have transformed machine translation
- Neural Machine Translation (NMT) systems are typically based on sequence-to-sequence models with attention
- Today we'll describe a number of enhancements/modifications that improve translation quality

Input RNN ("Encoder")

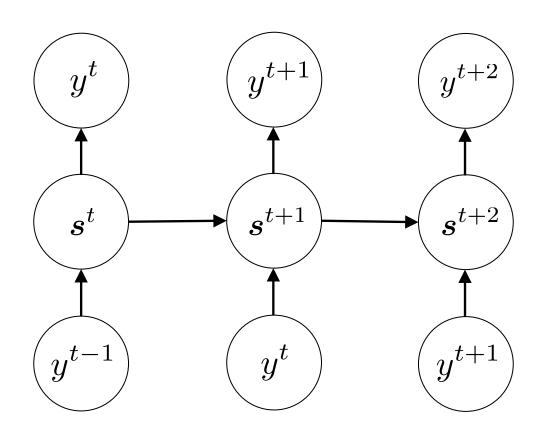
$$\boldsymbol{h}^t = anh\left(W^{(x)}\boldsymbol{x}^t + W^{(h)}\boldsymbol{h}^{t-1} + \boldsymbol{b}^{(h)}\right)$$



Output RNN ("Decoder")

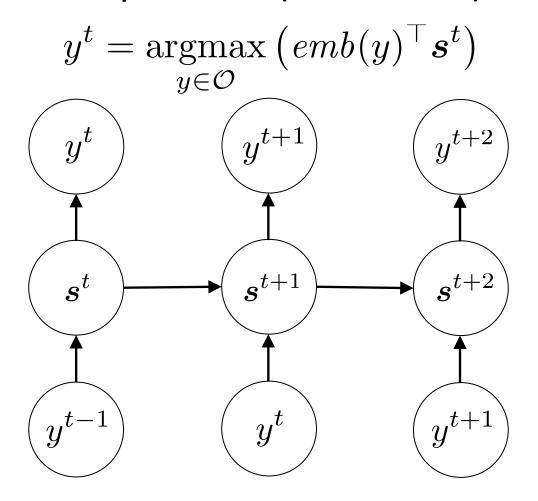


Output RNN ("Decoder")



$$\boldsymbol{s}^t = anh\left(W^{(y)}\boldsymbol{y}^{t-1} + W^{(s)}\boldsymbol{s}^{t-1} + \boldsymbol{b}^{(s)}\right)$$

Output RNN ("Decoder")



$$oldsymbol{s}^t = anh\left(W^{(y)}oldsymbol{y}^{t-1} + W^{(s)}oldsymbol{s}^{t-1} + oldsymbol{b}^{(s)}
ight)$$

Attention for NMT

 Luong et al. (2015) simplify & generalize the model of Bahdanau, and compare different ways of defining attention

Simplifying Attention for NMT

Same in both:
$$c^t = \sum_{u=1}^{|x|} \alpha^{t,u} h^u$$

Bahdanau et al. (simplified a bit for clarity):

$$s^{t} = \tanh\left(W^{(y)}y^{t-1} + W^{(s)}s^{t-1} + W^{(c)}c^{t} + b^{(s)}\right)$$
$$y^{t} = \underset{y \in \mathcal{O}}{\operatorname{argmax}}\left(emb(y)^{\top}[s^{t}; c^{t}]\right)$$

Luong et al.:

 $oldsymbol{s}^t$ just comes from decoder RNN

$$\tilde{s}^t = \tanh\left(W^{(c)}[c^t; s^t]\right)$$

$$y^t = \operatorname*{argmax}_{u \in \mathcal{O}} \left(emb(y)^{\top} \tilde{s}^t\right)$$

How is this simpler?

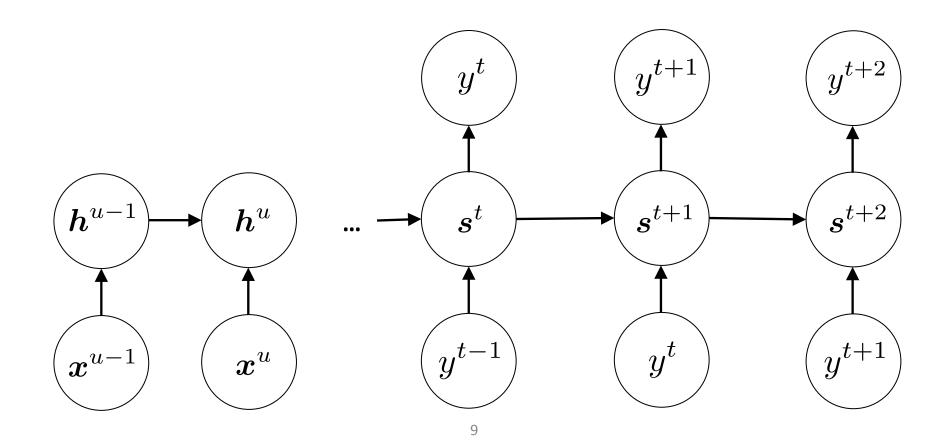
Attention Functions

Bahdanau et al.:

$$\alpha^{t,u} \propto \exp\{att(\boldsymbol{s}^{t-1}, \boldsymbol{h}^u)\}$$

Luong et al.:

$$\alpha^{t,u} \propto \exp\{att(\boldsymbol{s}^t, \boldsymbol{h}^u)\}$$



Global Attention

global = computed over all hidden vectors of input

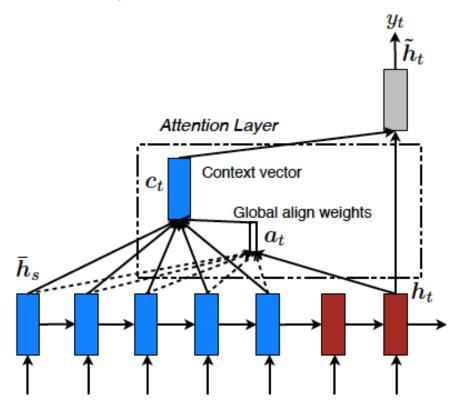


Figure 2: Global attentional model – at each time step t, the model infers a variable-length alignment weight vector a_t based on the current target state h_t and all source states \bar{h}_s . A global context vector c_t is then computed as the weighted average, according to a_t , over all the source states.

Luong et al. (2015)

Global Content-Based Attention Functions

global = computed over all hidden vectors of input
content-based = attention function looks at source
hidden vectors

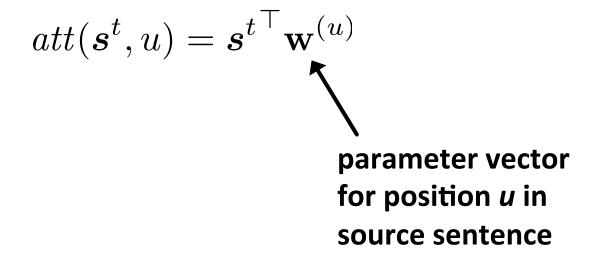
dot product ("dot"): $att(s^t, h^u) = s^{t^{\top}} h^u$ bilinear ("general"): $att(s^t, h^u) = s^{t^{\top}} W^{(a)} h^u$ feed-forward ("concat"): $att(s^t, h^u) = \mathbf{w}^{(a)^{\top}} [s^t; h^u]$

Luong et al. (2015)

parameter vector

Global Location-Based Attention Function

global = computed over all hidden vectors of input **location-based** = attention function does **not** look at source hidden vectors themselves, just positions:



Luong et al. (2015)

Results

System	Ppl	BLEU
global (location)	6.4	18.1
global (dot)	6.1	18.6
global (general)	6.1	17.3

feed-forward ("concat") did not work well!

Local Attention

local = computed over a subset of input hidden vectors

at decoder step t, find position p_t in source sentence,

compute attention over a window centered at that position in the source sentence

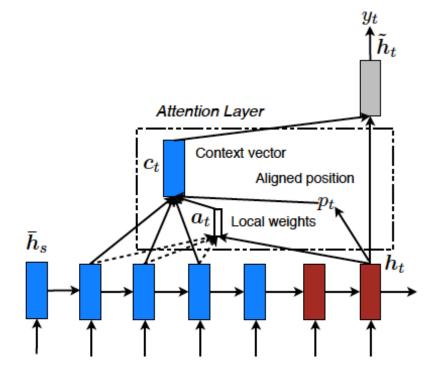


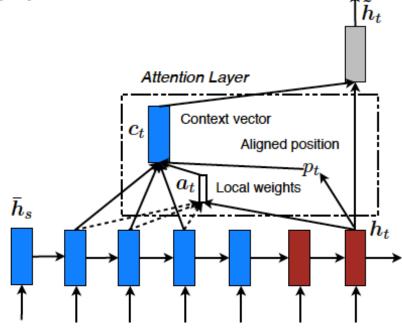
Figure 3: Local attention model – the model first predicts a single aligned position p_t for the current target word. A window centered around the source position p_t is then used to compute a context vector c_t , a weighted average of the source hidden states in the window. The weights a_t are inferred from the current target state h_t and those source states \bar{h}_s in the window.

Local Attention

local-m: set $p_t = t$, assumes roughly monotonic alignment between decoder positions and source sentence positions

local-p: predict p_t based on decoder hidden state

and some additional parameters



Results

System	Ppl	BLEU
global (location)	6.4	18.1
global (dot)	6.1	18.6
global (general)	6.1	17.3
local-m (dot)	>7.0	X
local-m (general)	6.2	18.6

Table 4: **Attentional Architectures** – performances of different attentional models. We trained two local-m (dot) models; both have ppl > 7.0.

"Effective Approaches to Attention-based Neural Machine Translation" Luong et al. (2015)

Results

System	Ppl	BLEU
global (location)	6.4	18.1
global (dot)	6.1	18.6
global (general)	6.1	17.3
local-m (dot)	>7.0	X
local-m (general)	6.2	18.6
local-p (dot)	6.6	18.0
local-p (general)	5.9	19

Table 4: **Attentional Architectures** – performances of different attentional models. We trained two local-m (dot) models; both have ppl > 7.0.

"Effective Approaches to Attention-based Neural Machine Translation" Luong et al. (2015)

"Input Feeding" of Decoder Hidden States

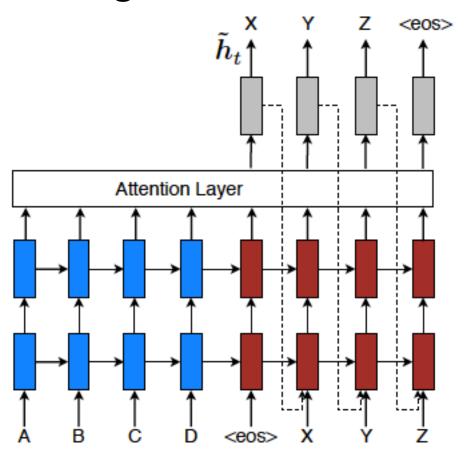
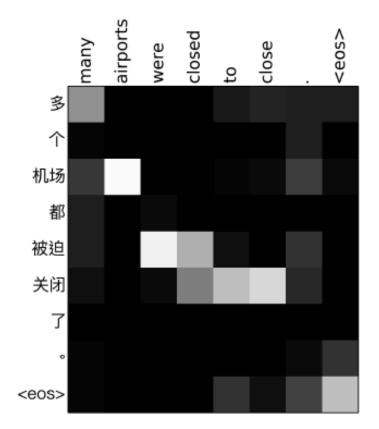
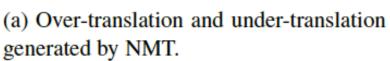


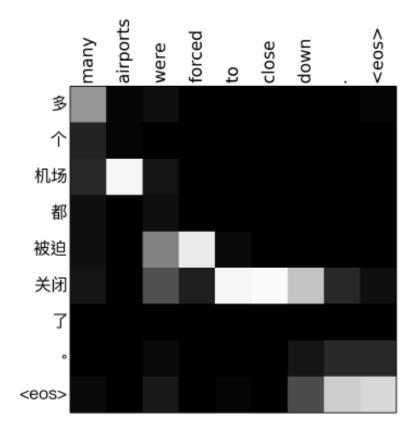
Figure 4: **Input-feeding approach** – Attentional vectors \tilde{h}_t are fed as inputs to the next time steps to inform the model about past alignment decisions.

Modeling Coverage

 NMT sometimes doesn't translate all source words, or translates them multiple times





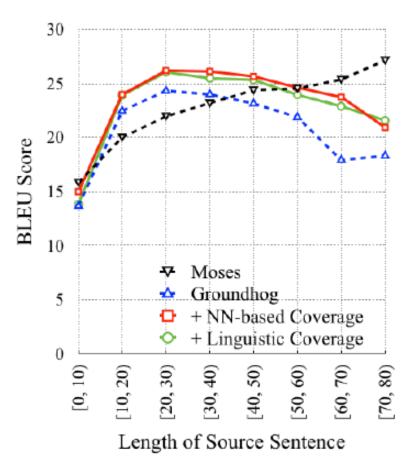


(b) Coverage model alleviates the problems of over-translation and under-translation.

Figure 1: Example translations of (a) NMT without coverage, and (b) NMT with coverage. In conventional NMT without coverage, the Chinese word "guānbì" is over translated to "close(d)" twice, while "bèipò" (means "be forced to") is mistakenly untranslated. Coverage model alleviates these problems by tracking the "coverage" of source words.

"Modeling Coverage for Neural Machine Translation" Tu et al. (2016)

Results: Modeling Coverage



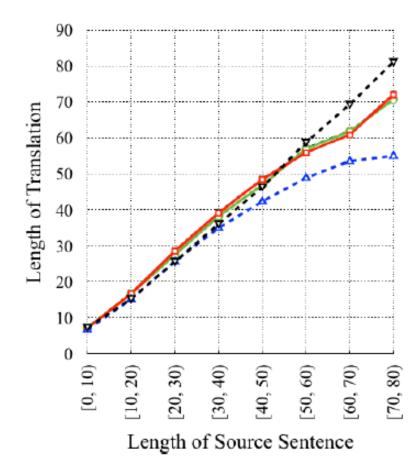


Figure 6: Performance of the generated translations with respect to the lengths of the input sentences. Coverage models alleviate under-translation by producing longer translations on long sentences.

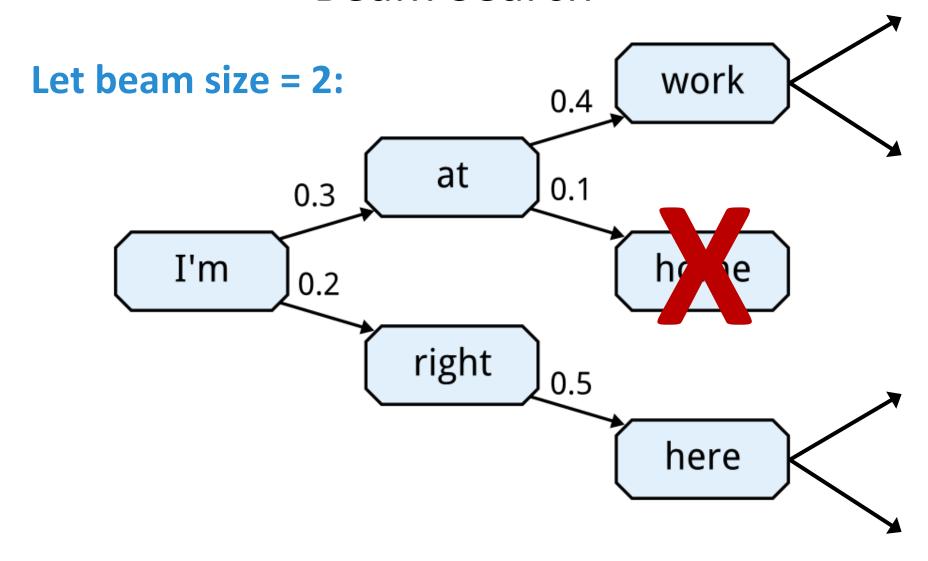
"Modeling Coverage for Neural Machine Translation" Tu et al. (2016)

Inference

Beam Search

- to find a translation, greedy search just picks most-probable word at each position
- but does this give us any guarantees about the entire translation?
- beam search can be used to approximately find the most-probable complete translation

Beam Search



Learning

Concern

- there's a mismatch between training and test!
- (what is it?)

Scheduled Sampling

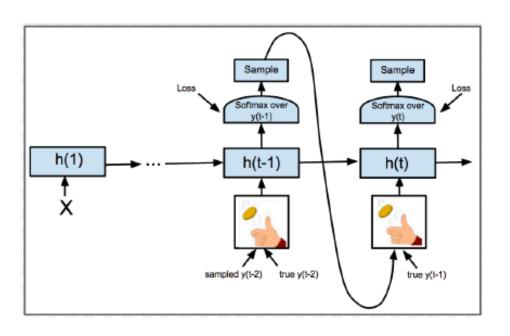


Figure 1: Illustration of the Scheduled Sampling approach, where one flips a coin at every time step to decide to use the true previous token or one sampled from the model itself.

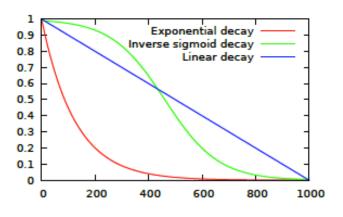


Figure 2: Examples of decay schedules.

"Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks" Bengio et al. (2015)

Scheduled Sampling Results

Table 2: F1 score (the higher the better) on the validation set of the parsing task.

Approach	F1
Baseline LSTM	86.54
Baseline LSTM with Dropout	87.0
Always Sampling	-
Scheduled Sampling	88.08
Scheduled Sampling with Dropout	88.68

"Always Sampling" did not work well!

"Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks" Bengio et al. (2015)