Structured Prediction with Neural Networks in Speech Recognition

Liang Lu

TTIC

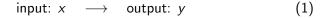
19 April 2016

Outline

- Speech Recognition as a Structured Prediction problem
- Hidden Markov Models
- Connectionist Temporal Classification
- Neural Segmental Conditional Random Field
- Encoder-Decoder with Attention

Structured Prediction

General supervised training:



- Classification
 - Input (x): scalar or vector,
 - Output(y): discrete class label
 - \circ Loss: (usually) 0-1 loss
- Regression
 - Input (x): scalar or vector
 - Output (y): real number
 - Loss: (usually) mean square error

Structured Prediction

(2)

General supervised training:

input: $x \longrightarrow$ output: y

- Structured Prediction
 - Input (x): set or sequence,
 - Output (y): sequence, tree, or graph
 - $\,\circ\,$ Loss: ?

Structured Prediction

General sequence transduction:

input:
$$x_{1:T} \longrightarrow \text{output: } y_{1:L}$$
 (3)

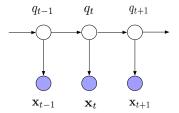
- Speech Recognition
 - Input (x): a sequence of vectors (length = T)
 - Output (y): a sequence of class labels (length = L)
 - Loss: edit distance (optimal, but not differentiable)
- Challenges
 - \circ T > L: segmentation problem
 - $\circ x_t \rightarrow ?:$ alignment problem

• General sequence transduction:

input: $x_{1:T} \longrightarrow \text{output: } y_{1:L}$ (4)

• Frame-level classification problem:

input: $x_{1:T} \longrightarrow \text{hidden:} q_{1:T} \longrightarrow \text{output:} y_{1:L}$ (5)

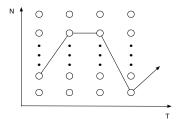


- Given $(x, q)_{1:T}$, mini-batch training of NN is straightforward
- Problem: how to get the hidden labels $q_{1:T}$?
- Expectation-Maximization algorithm
 - E: Given $x_{1:T}, y_{1:L}, \theta_{old}$, compute $P(q_{1:T}|x_{1:T}, y_{1:L}; \theta_{old})$

constrained decoding

- $\circ \; \mathsf{M: Given} \; \mathsf{x}_{1:\mathcal{T}}, \mathsf{q}_{1:\mathcal{T}}, \; \mathsf{update \; model} \; \theta_{\mathit{new}} \leftarrow \theta_{\mathit{old}} + \delta \theta$
- Usually do many iterations

• Decoding and Constrained Decoding



- T is the number of time steps
- N is the number of HMM states

- Decoding graph: $H \circ C \circ L \circ G$
 - \circ H: HMM transition ids to context dependent phones
 - C: context dependent phones to context independent phones
 - \circ L: context independent phones to words
 - \circ G: words to sequences of words
- Example: http://vpanayotov.blogspot.com/2012/06/kaldidecoding-graph-construction.html

- Limitations:
 - $\circ~$ Conditional independence: given $q_{1:T},$ every pair of x are independent
 - Local (frame-level) normalization: $P(q_t|x_t)$
 - \circ Not end-to-end, many iterations to update $q_{1:T}$

• Enumerate all the hidden labels (paths)

input:
$$x_{1:T} \longrightarrow$$
 hidden: $\begin{bmatrix} q_{1:T} \\ q_{1:T} \\ \vdots \\ q_{1:T} \end{bmatrix} \longrightarrow$ output: $y_{1:L}$ (6)

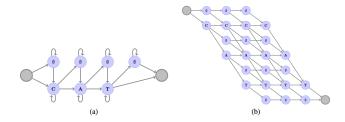
• Marginalize out the hidden variables

$$P(y_{1:L}|x_{1:T}) = \sum_{q_{1:T} \in \psi(y)} P(q_{1:T}|x_{1:T})$$
(7)

• Again, local normalization

$$P(q_{1:T}|x_{1:T}) = \prod_{t} P(q_t|x_t)$$
(8)

• How to enumerate all the paths?



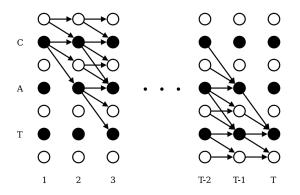
• Can you enumerate all the paths for MT?

[1] R. Collobert, et al, "Wav2Letter: an End-to-End ConvNet-based Speech Recognition System", arXiv 2016

- Role of the blank state (−), separating duplicated labels
 y: abbc → q: {a, b} {b, c}
 q: -aaa-bb-bbb-cc- → y: abbc
- Conditional maximum likelihood training

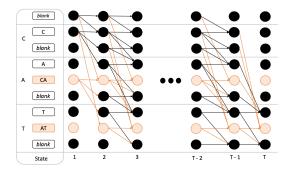
$$P(y_{1:L}|x_{1:T}) = \sum_{q_{1:T} \in \psi(y)} P(q_{1:T}|x_{1:T})$$
(9)

· Forward-backward algorithm to compute the summed probability

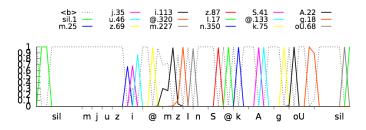


[1] A. Graves, et al, "Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks", ICML 2006

• Gram-CTC: CTC with character n-grams



[1] H. Liu, et al, "Gram-CTC: Automatic Unit Selection and Target Decomposition for Sequence Labelling", arXiv 2017 $_{15\mbox{ of }48}$



Q: Why most of the frames are labelled as blank?

[1] A. Senior, et al, "Acoustic Modelling with CD-CTC-sMBR LSTM RNNs", ASRU 2015.

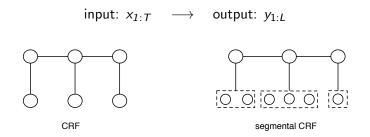
16 of 48

Remarks:

- Suitable for end-to-end training
- Independence assumption: $P(q_{1:T}|x_{1:T}) = \prod_t P(q_t|x_t)$
- Scalable to large dataset
- Works with LSTM, CNN, but not DNN

(Segmental) Conditional Random Field

Sequence transduction for speech:



- CRF still require an alignment model for speech recognition
- Segmental CRF is equipped with implicit alignment

(Segmental) Conditional Random Field

• CRF [Lafferty et al. 2001]

$$\mathsf{P}(y_{1:L} \mid x_{1:T}) = \frac{1}{Z(x_{1:T})} \prod_{j} \exp\left(w^{\top} \Phi(y_j, x_{1:T})\right)$$
(10)

where L = T.

Segmental (semi-Markov) CRF [Sarawagi and Cohen 2004]

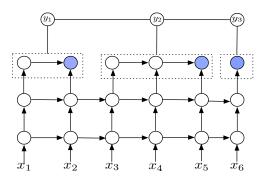
$$P(y_{1:L}, E, | x_{1:T}) = \frac{1}{Z(x_{1:T})} \prod_{j} \exp\left(w^{\top} \Phi(y_j, e_j, \mathbf{x}_{1:T})\right) \quad (11)$$

where $e_j = \langle s_j, n_j \rangle$ denotes the beginning (s_j) and end (n_j) time tag of y_j ; $E = \{e_{1:L}\}$ is the latent segment label.

$$\frac{1}{Z(x_{1:T})} \prod_{j} \exp\left(\mathbf{w}^{\top} \Phi(y_{j}, x_{1:T})\right)$$

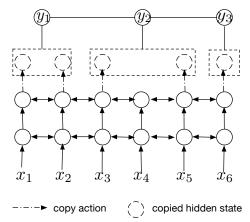
- Learnable parameter w
- Engineering the feature function $\Phi(\cdot)$
- Designing $\Phi(\cdot)$ is much harder for speech than NLP

• Using (recurrent) neural networks to learn the feature function $\Phi(\cdot).$



Segmental Recurrent Neural Network

• More memory efficient



- · Comparing to previous segmental models
 - M. Ostendorf et al., "From HMM's to segment models: a unified view of stochastic modeling for speech recognition", IEEE Trans. Speech and Audio Proc. 1996
 - J. Glass, "A probabilistic framework for segment-based speech recognition", Computer Speech & Language, 2002
- Markovian framework vs. CRF framework (local vs. global normalization)
- Neural network feature (and end-to-end training)

Related works

- (Segmental) CRFs for speech
- Neural CRFs
- Structured SVMs
- Two good review papers
 - M. Gales, S. Watanabe and E. Fosler-Lussier, "Structured Discriminative Models for Speech Recognition", IEEE Signal Processing Magazine, 2012
 - E. Fosler-Lussier et al. "Conditional random fields in speech, audio, and language processing, Proceedings of the IEEE, 2013

Segmental Recurrent Neural Network

- Training criteria
 - Conditional maximum likelihood

$$\mathcal{L}(\theta) = \log P(y_{1:L} \mid x_{1:T}) = \log \sum_{E} P(y_{1:L}, E \mid x_{1:T})$$
(12)

- $\circ~$ Hinge loss similar to structured SVM
- Marginalized hinge loss

[1] H. Tang, et al, "End-to-end training approaches for discriminative segmental models", SLT, 2016

- Viterbi decoding
 - Partially Viterbi decoding

$$y_{1:L}^* = \arg \max_{y_{1:L}} \log \sum_{E} P(y_{1:L}, E \mid x_{1:T})$$
(13)

• Full Viterbi decoding

$$y_{1:L}^* = \arg \max_{y_{1:L}, E} \log P(y_{1:L}, E \mid x_{1:T})$$
(14)

Remarks:

- No independence assumption
- Globally (sequence-level) normalized model
- Computationally expensive, not very scalable

Scale to Large Vocabulary ASR

• Why Segmental CRF expensive?

$$P(y_{1:L}, E, |x_{1:T}) = \frac{1}{Z(x_{1:T})} \prod_{j} \exp\left(w^{\top} \Phi(y_{j}, e_{j}, x_{1:T})\right)$$
(15)

where $e_j = \langle s_j, n_j \rangle$ denotes the beginning (s_j) and end (n_j) time tag.

$$Z(x_{1:T}) = \sum_{y,E} \prod_{j=1}^{J} \exp f(y_j, e_j, x_{1:T}).$$
 (16)

• Computation complexity is $O(T^2|\mathcal{V}|)$

• Analogous to large softmax for language modeling

$$P(w) = \frac{\exp(z_w)}{\sum_{w' \in \mathcal{V}} \exp(z_{w'})}$$
(17)

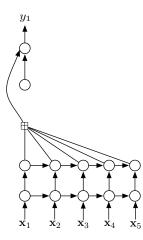
- Noise Contrastive Estimation
- Importance Sampling
- Can we try similar ideas for SCRF?

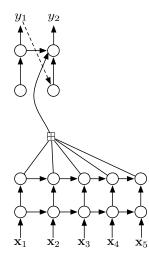
Sequence transduction for speech:

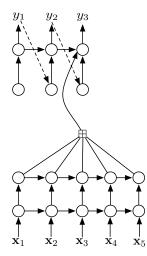
input: $x_{1:T} \longrightarrow \text{output: } y_{1:L}$

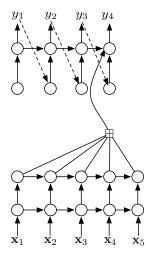
Compute the conditional probability

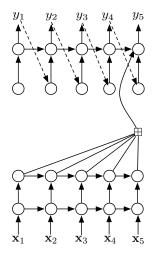
$$P(y_{1:L}|x_{1:T}) = \prod_{l=1}^{L} P(y_l|y_{<1}, x_{1:T})$$
(18)
$$\approx \prod_{l=1}^{L} P(y_l|y_{<1}, c_l)$$
(19)
$$c_l = \operatorname{attEnc}(y_{<1}, x_{1:T})$$
(20)

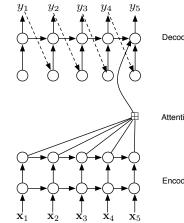












Decoder $P(y_j \mid y_1, \cdots, y_{j-1}, \mathbf{c}_j)$

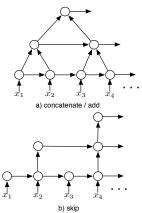
Attention $\mathbf{c}_j = \operatorname{Attend}(\mathbf{h}_{1:T})$

Encoder $\mathbf{h}_{1:T} = \text{RNN}(\mathbf{x}_{1:T})$

CHICAGO AS

Attention Model

Encoder with pyramid RNN



Attention Model

- Remarks
 - $\circ~$ monotonic alignment $\times~$
 - $\circ~$ independence assumption for inputs \times
 - $\,\circ\,$ long input sequence $\sqrt{}$
 - $\,\circ\,$ length mismatch $\sqrt{}$
 - $\circ\;$ Locally normalized for each output token

$$P(y_{1:L}|x_{1:T}) \approx \prod_{l} P(y_l|y_{< l}, c_l)$$
(21)

Attention Model

- Locally normalized models:
 - $\circ~$ conditional independence assumption
 - label bias problem
 - $\circ~$ We care more about the sequence level loss in speech recognition

o ...

[1] D. Andor, et al, "Globally Normalized Transition-Based Neural Networks", ACL, 2016

Speech Recognition

- Locally to globally normalized models:
 - $\circ~$ HMMs: CE \rightarrow sequence training
 - $\circ~$ CTC: CE \rightarrow sequence training
 - Attention model: Minimum Bayes Risk training

$$\mathcal{L} = \sum_{y \in \Omega} P(y|x) A(y, \hat{y})$$
(22)

 $\circ~$ Would be interesting to look at this for speech

 S. Shen, et al, "Minimum Risk Training for Neural Machine Translation", ACL, 2016
 S. Wiseman, A. Rush, "Sequence-to-Sequence Learning as Beam-Search Optimization", EMNLP, 2016

40 of 48

Experimental Results

- TIMIT dataset (\sim 1 million frames)
- WSJ (\sim 30 million frames)
- SWBD (\sim 100 millon frames)

Experiments on TIMIT

Table: Results on TIMIT. LM = language model, SD = speaker dependent feature

System	LM	SD	PER
HMM-DNN			18.5
CTC [Graves 2013]	×	×	18.4
RNN transducer [Graves 2013]	-	×	17.7
Attention model [Chorowski 2015]	-	×	17.6
Segmental RNN	×	×	18.9
Segmental RNN	×		17.3

Experiments on WSJ

Table: Results on WSJ. LM = language model

System	LM	WER(%)
HMM-DNN (phone)		3 - 4
CTC [Graves & Jaitly 2014]	×	30.1
CTC [Graves & Jaitly 2014]		8.7
CTC [Miao 2015]		7.3
Gram-CTC [Liu 2017]		6.8
Attention model [Chan 2016]	-	9.6
Attention model [Chorowski 2016]		6.7

Experiments on SWBD

Table: Results on SWBD. LM = language model

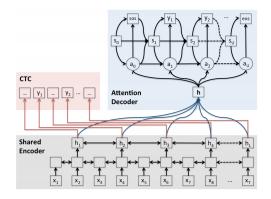
System	LM	WER(%)
HMM-DNN (phone)		9.6
HMM-DNN (phone) (2000h)		5.5
CTC [Zweig 2016]	×	24.7
CTC [Zweig 2016]		14.0
Gram-CTC [Liu 2017] (2000h)		7.3
Attention model [Lu 2016]	×	26.8
Attention model [Toshniwal 2017]	×	23.1

Multitask Learning

- Weaknesses of end-to-end models
 - $\circ~$ Attention model alignment problem in the early stage of training
 - $\circ~$ CTC model conditional independence assumption
 - SRNN model large computational cost
- Multitask learning to mitigate the weaknesses

 S. Kim, T. Hori, S. Watanabe, "Joint CTC-Attention based End-to-End Speech Recognition using Multi-task Learning", ICASSP 2017.

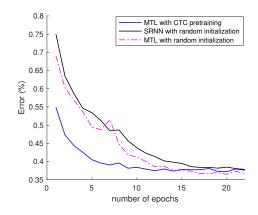
Multitask Learning



[1] S. Kim, T. Hori, S. Watanabe, "Joint CTC-Attention based End-to-End Speech Recognition using Multi-task Learning", ICASSP 2017.

46 of 48

Multitask Learning



 [1] L. Lu et al., "Multi-task Learning with CTC and Segmental CRF for Speech Recognition", arXiv 2017.
 47 of 48

Conclusion

- Structured prediction for speech recognition
- End-to-end training models
- Flexibility vs. Scalability
- Other deep learning architectures