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Abstract
We propose a unified neural network architecture and learning algorithm that can be applied to var-
ious natural language processing tasks including part-of-speech tagging, chunking, named entity
recognition, and semantic role labeling. This versatility is achieved by trying to avoid task-specific
engineering and therefore disregarding a lot of prior knowledge. Instead of exploiting man-made
input features carefully optimized for each task, our system learns internal representations on the
basis of vast amounts of mostly unlabeled training data. This work is then used as a basis for
building a freely available tagging system with good performance and minimal computational re-
quirements.
Keywords: natural language processing, neural networks

1. Introduction

Will a computer program ever be able to convert a piece of English text into a programmer friendly
data structure that describes the meaning of the natural language text? Unfortunately, no consensus
has emerged about the form or the existence of such a data structure. Until such fundamental
Articial Intelligence problems are resolved, computer scientists must settle for the reduced objective
of extracting simpler representations that describe limited aspects of the textual information.

These simpler representations are often motivated by specific applications (for instance, bag-
of-words variants for information retrieval), or by our belief that they capture something more gen-
eral about natural language. They can describe syntactic information (e.g., part-of-speech tagging,
chunking, and parsing) or semantic information (e.g., word-sense disambiguation, semantic role
labeling, named entity extraction, and anaphora resolution). Text corpora have been manually an-
notated with such data structures in order to compare the performance of various systems. The
availability of standard benchmarks has stimulated research in Natural Language Processing (NLP)
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NATURAL LANGUAGE PROCESSING (ALMOST) FROM SCRATCH
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Figure 1: Window approach network.

complex features (e.g., extracted from a parse tree) which can impact the computational cost which
might be important for large-scale applications or applications requiring real-time response.

Instead, we advocate a radically different approach: as input we will try to pre-process our
features as little as possible and then use a multilayer neural network (NN) architecture, trained in
an end-to-end fashion. The architecture takes the input sentence and learns several layers of feature
extraction that process the inputs. The features computed by the deep layers of the network are
automatically trained by backpropagation to be relevant to the task. We describe in this section a
general multilayer architecture suitable for all our NLP tasks, which is generalizable to other NLP
tasks as well.

Our architecture is summarized in Figure 1 and Figure 2. The first layer extracts features for
each word. The second layer extracts features from a window of words or from the whole sentence,
treating it as a sequence with local and global structure (i.e., it is not treated like a bag of words).
The following layers are standard NN layers.

3.1 Notations

We consider a neural network fθ(·), with parameters θ. Any feed-forward neural network with L
layers, can be seen as a composition of functions f lθ(·), corresponding to each layer l:

fθ(·) = f Lθ ( f L−1θ (. . . f 1θ (·) . . .)) .
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•  	  	  	  	  	  	  is	  training	  set	  of	  11-‐word	  windows	  
•  	  	  	  	  	  	  is	  vocabulary	  
•  What	  is	  going	  on	  here?	  
– Make	  actual	  text	  window	  have	  higher	  score	  than	  
all	  windows	  with	  center	  word	  replaced	  by	  w	  
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•  	  	  	  	  	  	  is	  training	  set	  of	  11-‐word	  windows	  
•  	  	  	  	  	  	  is	  vocabulary	  
•  This	  sTll	  sums	  over	  enTre	  vocabulary,	  so	  it	  
should	  be	  as	  slow	  as	  log	  loss…	  

•  Why	  can	  it	  be	  faster?	  
– when	  using	  SGD,	  summaTon	  à	  sample	  
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COLLOBERT, WESTON, BOTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

can be extremely demanding, and sophisticated approximations are required. More importantly for
us, neither work leads to significant word embeddings being reported.

Shannon (1951) has estimated the entropy of the English language between 0.6 and 1.3 bits per
character by asking human subjects to guess upcoming characters. Cover and King (1978) give
a lower bound of 1.25 bits per character using a subtle gambling approach. Meanwhile, using a
simple word trigram model, Brown et al. (1992b) reach 1.75 bits per character. Teahan and Cleary
(1996) obtain entropies as low as 1.46 bits per character using variable length character n-grams.
The human subjects rely of course on all their knowledge of the language and of the world. Can we
learn the grammatical structure of the English language and the nature of the world by leveraging
the 0.2 bits per character that separate human subjects from simple n-grammodels? Since such tasks
certainly require high capacity models, obtaining sufficiently small confidence intervals on the test
set entropy may require prohibitively large training sets.16 The entropy criterion lacks dynamical
range because its numerical value is largely determined by the most frequent phrases. In order to
learn syntax, rare but legal phrases are no less significant than common phrases.

It is therefore desirable to define alternative training criteria. We propose here to use a pairwise
ranking approach (Cohen et al., 1998). We seek a network that computes a higher score when
given a legal phrase than when given an incorrect phrase. Because the ranking literature often deals
with information retrieval applications, many authors define complex ranking criteria that give more
weight to the ordering of the best ranking instances (see Burges et al., 2007; Clémençon and Vayatis,
2007). However, in our case, we do not want to emphasize the most common phrase over the rare
but legal phrases. Therefore we use a simple pairwise criterion.

We consider a window approach network, as described in Section 3.3.1 and Figure 1, with
parameters θ which outputs a score fθ(x) given a window of text x = [w]dwin1 . We minimize the
ranking criterion with respect to θ:

θ !→ ∑
x∈X

∑
w∈D

max
{

0 , 1− fθ(x)+ fθ(x
(w))

}

, (17)

where X is the set of all possible text windows with dwin words coming from our training corpus, D
is the dictionary of words, and x(w) denotes the text window obtained by replacing the central word
of text window [w]dwin1 by the word w.

Okanohara and Tsujii (2007) use a related approach to avoiding the entropy criteria using a
binary classification approach (correct/incorrect phrase). Their work focuses on using a kernel
classifier, and not on learning word embeddings as we do here. Smith and Eisner (2005) also
propose a contrastive criterion which estimates the likelihood of the data conditioned to a “negative”
neighborhood. They consider various data neighborhoods, including sentences of length dwin drawn
from Ddwin . Their goal was however to perform well on some tagging task on fully unsupervised
data, rather than obtaining generic word embeddings useful for other tasks.

4.3 Training Language Models

The language model network was trained by stochastic gradient minimization of the ranking crite-
rion (17), sampling a sentence-word pair (s, w) at each iteration.

16. However, Klein and Manning (2002) describe a rare example of realistic unsupervised grammar induction using a
cross-entropy approach on binary-branching parsing trees, that is, by forcing the system to generate a hierarchical
representation.
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Collobert	  et	  al.	  (2011)	  
•  631M	  word	  tokens,	  100k	  vocab	  size,	  11-‐word	  
input	  window,	  4	  weeks	  of	  training	  

•  they	  didn’t	  care	  about	  ge[ng	  good	  
perplexiTes,	  just	  good	  word	  embeddings	  for	  
their	  downstream	  NLP	  tasks	  

•  so	  a	  pairwise	  ranking	  loss	  makes	  sense	  in	  this	  
context	  
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•  word	  embedding	  nearest	  neighbors:	  COLLOBERT, WESTON, BOTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

FRANCE JESUS XBOX REDDISH SCRATCHED MEGABITS
454 1973 6909 11724 29869 87025

AUSTRIA GOD AMIGA GREENISH NAILED OCTETS
BELGIUM SATI PLAYSTATION BLUISH SMASHED MB/S
GERMANY CHRIST MSX PINKISH PUNCHED BIT/S
ITALY SATAN IPOD PURPLISH POPPED BAUD
GREECE KALI SEGA BROWNISH CRIMPED CARATS
SWEDEN INDRA PSNUMBER GREYISH SCRAPED KBIT/S
NORWAY VISHNU HD GRAYISH SCREWED MEGAHERTZ
EUROPE ANANDA DREAMCAST WHITISH SECTIONED MEGAPIXELS
HUNGARY PARVATI GEFORCE SILVERY SLASHED GBIT/S

SWITZERLAND GRACE CAPCOM YELLOWISH RIPPED AMPERES

Table 7: Word embeddings in the word lookup table of the language model neural network LM1
trained with a dictionary of size 100,000. For each column the queried word is followed
by its index in the dictionary (higher means more rare) and its 10 nearest neighbors (using
the Euclidean metric, which was chosen arbitrarily).

and semantic properties of the neighbors are clearly related to those of the query word. These
results are far more satisfactory than those reported in Table 7 for embeddings obtained using purely
supervised training of the benchmark NLP tasks.

4.5 Semi-supervised Benchmark Results

Semi-supervised learning has been the object of much attention during the last few years (see
Chapelle et al., 2006). Previous semi-supervised approaches for NLP can be roughly categorized as
follows:

• Ad-hoc approaches such as Rosenfeld and Feldman (2007) for relation extraction.

• Self-training approaches, such as Ueffing et al. (2007) for machine translation, and McClosky
et al. (2006) for parsing. These methods augment the labeled training set with examples from
the unlabeled data set using the labels predicted by the model itself. Transductive approaches,
such as Joachims (1999) for text classification can be viewed as a refined form of self-training.

• Parameter sharing approaches such as Ando and Zhang (2005); Suzuki and Isozaki (2008).
Ando and Zhang propose a multi-task approach where they jointly train models sharing cer-
tain parameters. They train POS and NER models together with a language model (trained on
15 million words) consisting of predicting words given the surrounding tokens. Suzuki and
Isozaki embed a generative model (Hidden Markov Model) inside a CRF for POS, Chunking
and NER. The generative model is trained on one billion words. These approaches should
be seen as a linear counterpart of our work. Using multilayer models vastly expands the
parameter sharing opportunities (see Section 5).

Our approach simply consists of initializing the word lookup tables of the supervised networks
with the embeddings computed by the language models. Supervised training is then performed as
in Section 3.5. In particular the supervised training stage is free to modify the lookup tables. This
sequential approach is computationally convenient because it separates the lengthy training of the
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Abstract

The recently introduced continuous Skip-gram model is an efficient method for
learning high-quality distributed vector representations that capture a large num-
ber of precise syntactic and semantic word relationships. In this paper we present
several extensions that improve both the quality of the vectors and the training
speed. By subsampling of the frequent words we obtain significant speedup and
also learn more regular word representations. We also describe a simple alterna-
tive to the hierarchical softmax called negative sampling.
An inherent limitation of word representations is their indifference to word order
and their inability to represent idiomatic phrases. For example, the meanings of
“Canada” and “Air” cannot be easily combined to obtain “Air Canada”. Motivated
by this example, we present a simple method for finding phrases in text, and show
that learning good vector representations for millions of phrases is possible.

1 Introduction

Distributed representations of words in a vector space help learning algorithms to achieve better
performance in natural language processing tasks by grouping similar words. One of the earliest use
of word representations dates back to 1986 due to Rumelhart, Hinton, and Williams [13]. This idea
has since been applied to statistical language modeling with considerable success [1]. The follow
up work includes applications to automatic speech recognition and machine translation [14, 7], and
a wide range of NLP tasks [2, 20, 15, 3, 18, 19, 9].

Recently, Mikolov et al. [8] introduced the Skip-gram model, an efficient method for learning high-
quality vector representations of words from large amounts of unstructured text data. Unlike most
of the previously used neural network architectures for learning word vectors, training of the Skip-
gram model (see Figure 1) does not involve dense matrix multiplications. This makes the training
extremely efficient: an optimized single-machine implementation can train on more than 100 billion
words in one day.

The word representations computed using neural networks are very interesting because the learned
vectors explicitly encode many linguistic regularities and patterns. Somewhat surprisingly, many of
these patterns can be represented as linear translations. For example, the result of a vector calcula-
tion vec(“Madrid”) - vec(“Spain”) + vec(“France”) is closer to vec(“Paris”) than to any other word
vector [9, 8].

1
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•  like	  Collobert	  et	  al.	  (2011),	  except:	  
–  no	  hidden	  layers	  
–  averages	  vectors	  of	  context	  words	  
rather	  than	  concatenaTng	  

–  objecTve	  is	  to	  classify	  center	  word,	  
so	  it’s	  a	  mulTclass	  classifier	  over	  all	  
possible	  words	  (could	  be	  very	  slow!)	  

–  Collobert	  et	  al	  were	  essenTally	  just	  
training	  a	  binary	  classifier,	  where	  
negaTve	  examples	  are	  drawn	  
randomly	  from	  vocab	  

CBOW	  
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skip-‐gram	  
•  skip-‐gram	  objecTve:	  

14	  

sum	  over	  
posiTons	  in	  
corpus	  

sum	  over	  context	  
words	  in	  window	  
(size	  =	  2c	  +	  1)	  
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“output”	  or	  
“outside”	  vector	  

“input”	  or	  
“inside”	  vector	  

skip-‐gram	  model	  uses	  two	  different	  vector	  spaces:	  



skip-‐gram	  model	  uses	  two	  different	  vector	  spaces:	  
	  
	  
why?	  
which	  should	  we	  use	  as	  our	  word	  embeddings?	  

16	  
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normalizaTon	  requires	  sum	  over	  what?	  
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normalizaTon	  requires	  sum	  over	  enTre	  vocabulary:	  



Hierarchical	  Sojmax	  
(Morin	  and	  Bengio,	  2005)	  

•  based	  on	  a	  new	  generaTve	  story	  for	  	  
•  but	  the	  generaTve	  story	  is	  so	  simple!	  
–  just	  draw	  from	  the	  condiTonal	  distribuTon	  

•  how	  can	  we	  make	  it	  more	  efficient?	  
•  we	  sTll	  need	  it	  to	  be	  true	  that:	  

19	  
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Hierarchical	  Sojmax	  in	  word2vec	  
•  new	  generaTve	  story	  for	  	  
–  a	  random	  walk	  through	  the	  vocabulary	  biased	  by	  v	  

•  idea:	  	  
–  build	  binary	  tree	  to	  represent	  vocabulary	  
–  to	  generate	  a	  context	  word	  of	  center	  word	  v,	  start	  at	  
the	  root	  and	  keep	  flipping	  biased	  coins	  (biased	  
according	  to	  v)	  to	  choose	  lej	  or	  right	  

–  stop	  on	  reaching	  a	  leaf	  
•  parameters	  of	  this	  generaTve	  model	  are	  vectors	  
for	  individual	  split	  points	  in	  the	  tree,	  and	  input	  
vector	  of	  v	  

21	  



GeneraTve	  Story	  for	  
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ROOT	  

the	  

red	  

dog	  …	  

flip	  a	  coin	  with	  Pr(heads)	  =	  	  
if	  tails,	  

	  output	  “the”	  as	  u	  
if	  heads,	  

	  flip	  coin	  w/	  Pr(heads)	  =	  
if	  heads,	  

	  output	  “red”	  as	  u	  
if	  tails,	  

	  flip	  coin	  w/	  Pr(heads)	  =	  	  
…	  

1	  

2	  
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ROOT	  

the	  

red	  

dog	  …	  

flip	  a	  coin	  with	  Pr(heads)	  =	  	  
if	  tails,	  

	  output	  “the”	  as	  u	  
if	  heads,	  

	  flip	  coin	  w/	  Pr(heads)	  =	  
if	  heads,	  

	  output	  “red”	  as	  u	  
…	  

1	  

2	  

What	  is	  the	  normalizaTon	  constant?	  
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ROOT	  

the	  

red	  

dog	  …	  

flip	  a	  coin	  with	  Pr(heads)	  =	  	  
if	  tails,	  

	  output	  “the”	  as	  u	  
if	  heads,	  

	  flip	  coin	  w/	  Pr(heads)	  =	  
if	  heads,	  

	  output	  “red”	  as	  u	  
…	  

1	  

2	  

What	  is	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ?	  
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ROOT	  

the	  

red	  

dog	  …	  

flip	  a	  coin	  with	  Pr(heads)	  =	  	  
if	  tails,	  

	  output	  “the”	  as	  u	  
if	  heads,	  

	  flip	  coin	  w/	  Pr(heads)	  =	  
if	  heads,	  

	  output	  “red”	  as	  u	  
…	  

1	  

2	  

Can	  you	  prove	  that	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ?	  



Hierarchical	  Sojmax	  for	  Skip-‐Gram	  
(Mikolov	  et	  al.,	  2013)	  

•  each	  word	  has	  a	  unique	  path	  from	  ROOT	  
•  rather	  than	  learn	  output	  vectors	  for	  all	  words,	  
learn	  output	  vectors	  only	  for	  internal	  nodes	  of	  
the	  binary	  tree	  

•  how	  should	  we	  arrange	  the	  words	  into	  a	  
binary	  tree?	  

26	  



•  How	  about	  this	  binary	  tree?	  

27	  

ROOT	  

the	  

Gomez-‐like	  

…	  

obtusely	  

a	  

Albertopolis	  
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28	  

ROOT	  

the	  

Gomez-‐like	  

…	  

obtusely	  

a	  

Albertopolis	  

Why	  is	  this	  tree	  bad?	  
Give	  two	  reasons.	  



•  How	  about	  this	  binary	  tree?	  

29	  

ROOT	  

Gomez-‐like	  

a	  

…	  

the	  

obtusely	  

that	  

Why	  is	  this	  tree	  bad?	  



•  word2vec	  uses	  Huffman	  coding	  (common	  words	  
have	  short	  codes,	  i.e.,	  are	  near	  top	  of	  tree)	  

30	  



NegaTve	  Sampling	  
(Mikolov	  et	  al.,	  2013)	  

•  rather	  than	  sum	  over	  enTre	  vocabulary,	  
generate	  samples	  and	  sum	  over	  them	  

•  instead	  of	  a	  mulTclass	  classifier,	  use	  a	  binary	  
classifier:	  

•  similar	  to	  idea	  of	  Collobert	  et	  al	  but	  uses	  log	  
loss	  instead	  of	  hinge	  loss	  
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NegaTve	  Sampling	  
(Mikolov	  et	  al.,	  2013)	  

•  NEG	  contains	  2-‐20	  words	  sampled	  from	  some	  
distribuTon	  
– e.g.,	  uniform,	  unigram,	  or	  smoothed	  unigram	  
– smoothed:	  raise	  probabiliTes	  to	  power	  ¾,	  
renormalize	  to	  get	  a	  distribuTon	  
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AlternaTves	  

•  Noise-‐ContrasTve	  EsTmaTon	  (Gutmann	  &	  Hyvarinen,	  
2010;	  2012)	  

•  Applied	  to	  language	  modeling	  by	  Mnih	  &	  Teh	  (2012)	  
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GloVe	  
(Pennington	  et	  al.,	  2014)	  
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GloVe: Global Vectors for Word Representation
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Abstract

Recent methods for learning vector space
representations of words have succeeded
in capturing fine-grained semantic and
syntactic regularities using vector arith-
metic, but the origin of these regularities
has remained opaque. We analyze and
make explicit the model properties needed
for such regularities to emerge in word
vectors. The result is a new global log-
bilinear regression model that combines
the advantages of the two major model
families in the literature: global matrix
factorization and local context window
methods. Our model efficiently leverages
statistical information by training only on
the nonzero elements in a word-word co-
occurrence matrix, rather than on the en-
tire sparse matrix or on individual context
windows in a large corpus. The model pro-
duces a vector space with meaningful sub-
structure, as evidenced by its performance
of 75% on a recent word analogy task. It
also outperforms related models on simi-
larity tasks and named entity recognition.

1 Introduction

Semantic vector space models of language repre-
sent each word with a real-valued vector. These
vectors can be used as features in a variety of ap-
plications, such as information retrieval (Manning
et al., 2008), document classification (Sebastiani,
2002), question answering (Tellex et al., 2003),
named entity recognition (Turian et al., 2010), and
parsing (Socher et al., 2013).

Most word vector methods rely on the distance
or angle between pairs of word vectors as the pri-
mary method for evaluating the intrinsic quality
of such a set of word representations. Recently,
Mikolov et al. (2013c) introduced a new evalua-
tion scheme based on word analogies that probes

the finer structure of the word vector space by ex-
amining not the scalar distance between word vec-
tors, but rather their various dimensions of dif-
ference. For example, the analogy “king is to
queen as man is to woman” should be encoded
in the vector space by the vector equation king �
queen = man � woman. This evaluation scheme
favors models that produce dimensions of mean-
ing, thereby capturing the multi-clustering idea of
distributed representations (Bengio, 2009).

The two main model families for learning word
vectors are: 1) global matrix factorization meth-
ods, such as latent semantic analysis (LSA) (Deer-
wester et al., 1990) and 2) local context window
methods, such as the skip-gram model of Mikolov
et al. (2013c). Currently, both families suffer sig-
nificant drawbacks. While methods like LSA ef-
ficiently leverage statistical information, they do
relatively poorly on the word analogy task, indi-
cating a sub-optimal vector space structure. Meth-
ods like skip-gram may do better on the analogy
task, but they poorly utilize the statistics of the cor-
pus since they train on separate local context win-
dows instead of on global co-occurrence counts.

In this work, we analyze the model properties
necessary to produce linear directions of meaning
and argue that global log-bilinear regression mod-
els are appropriate for doing so. We propose a spe-
cific weighted least squares model that trains on
global word-word co-occurrence counts and thus
makes efficient use of statistics. The model pro-
duces a word vector space with meaningful sub-
structure, as evidenced by its state-of-the-art per-
formance of 75% accuracy on the word analogy
dataset. We also demonstrate that our methods
outperform other current methods on several word
similarity tasks, and also on a common named en-
tity recognition (NER) benchmark.

We provide the source code for the model as
well as trained word vectors at http://nlp.
stanford.edu/projects/glove/.



Other	  Work	  on	  Word	  Embeddings	  
•  acTve	  research	  area	  (probably	  too	  acTve)	  
•  other	  direcTons:	  
– mulTple	  embeddings	  for	  a	  single	  word	  
corresponding	  to	  different	  word	  senses	  

– using	  subword	  informaTon	  (e.g.,	  characters)	  in	  
word	  embeddings	  

–  tailoring	  embeddings	  for	  different	  NLP	  tasks	  
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•  Pretrained	  word	  embeddings	  are	  really	  useful!	  

•  What	  about	  embeddings	  for	  phrases	  and	  
sentences?	  
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Unsupervised	  Sentence	  Models	  
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•  How	  are	  sentence	  embeddings	  useful?	  
– mulT-‐document	  summarizaTon	  
– automaTc	  essay	  grading	  
– evaluaTon	  of	  text	  generaTon	  systems	  
– machine	  translaTon	  
– entailment/inference	  
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Unsupervised	  Sentence	  Models	  
•  how	  should	  we	  evaluate	  sentence	  models?	  
•  we	  consider	  two	  kinds	  of	  evaluaTons	  here:	  
– sentence	  similarity:	  intrinsic	  evaluaTon	  of	  
sentence	  embedding	  space,	  no	  addiTonal	  learned	  
parameters	  

– sentence	  classificaTon:	  train	  a	  linear	  classifier	  
(logisTc	  regression)	  using	  the	  fixed	  sentence	  
representaTon	  as	  the	  input	  features	  
•  reporTng	  average	  accuracies	  over	  6	  tasks	  
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