
TTIC	 31210:	
Advanced	 Natural	 Language	 Processing	

Kevin	 Gimpel	
Spring	 2017	

	

Lecture	 4:	
Word	 Embeddings	 (2)	

1	

Collobert	 et	 al.	 (2011)	

2	

Journal of Machine Learning Research 12 (2011) 2493-2537 Submitted 1/10; Revised 11/10; Published 8/11

Natural Language Processing (Almost) from Scratch

Ronan Collobert∗ RONAN@COLLOBERT.COM
Jason Weston† JWESTON@GOOGLE.COM
Léon Bottou‡ LEON@BOTTOU.ORG
Michael Karlen MICHAEL.KARLEN@GMAIL.COM
Koray Kavukcuoglu§ KORAY@CS.NYU.EDU
Pavel Kuksa¶ PKUKSA@CS.RUTGERS.EDU
NEC Laboratories America
4 Independence Way
Princeton, NJ 08540

Editor:Michael Collins

Abstract
We propose a unified neural network architecture and learning algorithm that can be applied to var-
ious natural language processing tasks including part-of-speech tagging, chunking, named entity
recognition, and semantic role labeling. This versatility is achieved by trying to avoid task-specific
engineering and therefore disregarding a lot of prior knowledge. Instead of exploiting man-made
input features carefully optimized for each task, our system learns internal representations on the
basis of vast amounts of mostly unlabeled training data. This work is then used as a basis for
building a freely available tagging system with good performance and minimal computational re-
quirements.
Keywords: natural language processing, neural networks

1. Introduction

Will a computer program ever be able to convert a piece of English text into a programmer friendly
data structure that describes the meaning of the natural language text? Unfortunately, no consensus
has emerged about the form or the existence of such a data structure. Until such fundamental
Articial Intelligence problems are resolved, computer scientists must settle for the reduced objective
of extracting simpler representations that describe limited aspects of the textual information.

These simpler representations are often motivated by specific applications (for instance, bag-
of-words variants for information retrieval), or by our belief that they capture something more gen-
eral about natural language. They can describe syntactic information (e.g., part-of-speech tagging,
chunking, and parsing) or semantic information (e.g., word-sense disambiguation, semantic role
labeling, named entity extraction, and anaphora resolution). Text corpora have been manually an-
notated with such data structures in order to compare the performance of various systems. The
availability of standard benchmarks has stimulated research in Natural Language Processing (NLP)

∗. Ronan Collobert is now with the Idiap Research Institute, Switzerland.
†. Jason Weston is now with Google, New York, NY.
‡. Léon Bottou is now with Microsoft, Redmond, WA.
§. Koray Kavukcuoglu is also with New York University, New York, NY.
¶. Pavel Kuksa is also with Rutgers University, New Brunswick, NJ.

c⃝2011 Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu and Pavel Kuksa.

3	

NATURAL LANGUAGE PROCESSING (ALMOST) FROM SCRATCH

Input Window

Lookup Table

Linear

HardTanh

Linear

Text cat sat on the mat

Feature 1 w1
1 w1

2 . . . w1

N
.
.
.

Feature K wK
1 wK

2 . . . wK
N

LTW 1

.

.

.

LTW K

M1
× ·

M2
× ·

word of interest

d

concat

n
1
hu

n
2
hu

= #tags

Figure 1: Window approach network.

complex features (e.g., extracted from a parse tree) which can impact the computational cost which
might be important for large-scale applications or applications requiring real-time response.

Instead, we advocate a radically different approach: as input we will try to pre-process our
features as little as possible and then use a multilayer neural network (NN) architecture, trained in
an end-to-end fashion. The architecture takes the input sentence and learns several layers of feature
extraction that process the inputs. The features computed by the deep layers of the network are
automatically trained by backpropagation to be relevant to the task. We describe in this section a
general multilayer architecture suitable for all our NLP tasks, which is generalizable to other NLP
tasks as well.

Our architecture is summarized in Figure 1 and Figure 2. The first layer extracts features for
each word. The second layer extracts features from a window of words or from the whole sentence,
treating it as a sequence with local and global structure (i.e., it is not treated like a bag of words).
The following layers are standard NN layers.

3.1 Notations

We consider a neural network fθ(·), with parameters θ. Any feed-forward neural network with L
layers, can be seen as a composition of functions f lθ(·), corresponding to each layer l:

fθ(·) = f Lθ (f L−1θ (. . . f 1θ (·) . . .)) .

2499

Collobert	 et	 al.	 Pairwise	 Ranking	 Loss	

4	

•  	 	 	 	 	 	 is	 training	 set	 of	 11-‐word	 windows	
•  	 	 	 	 	 	 is	 vocabulary	
•  What	 is	 going	 on	 here?	
– Make	 actual	 text	 window	 have	 higher	 score	 than	
all	 windows	 with	 center	 word	 replaced	 by	 w	

Collobert	 et	 al.	 Pairwise	 Ranking	 Loss	

5	

•  	 	 	 	 	 	 is	 training	 set	 of	 11-‐word	 windows	
•  	 	 	 	 	 	 is	 vocabulary	
•  This	 sTll	 sums	 over	 enTre	 vocabulary,	 so	 it	
should	 be	 as	 slow	 as	 log	 loss…	

•  Why	 can	 it	 be	 faster?	
– when	 using	 SGD,	 summaTon	 à	 sample	

Collobert	 et	 al.	 (2011)	

6	

COLLOBERT, WESTON, BOTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

can be extremely demanding, and sophisticated approximations are required. More importantly for
us, neither work leads to significant word embeddings being reported.

Shannon (1951) has estimated the entropy of the English language between 0.6 and 1.3 bits per
character by asking human subjects to guess upcoming characters. Cover and King (1978) give
a lower bound of 1.25 bits per character using a subtle gambling approach. Meanwhile, using a
simple word trigram model, Brown et al. (1992b) reach 1.75 bits per character. Teahan and Cleary
(1996) obtain entropies as low as 1.46 bits per character using variable length character n-grams.
The human subjects rely of course on all their knowledge of the language and of the world. Can we
learn the grammatical structure of the English language and the nature of the world by leveraging
the 0.2 bits per character that separate human subjects from simple n-grammodels? Since such tasks
certainly require high capacity models, obtaining sufficiently small confidence intervals on the test
set entropy may require prohibitively large training sets.16 The entropy criterion lacks dynamical
range because its numerical value is largely determined by the most frequent phrases. In order to
learn syntax, rare but legal phrases are no less significant than common phrases.

It is therefore desirable to define alternative training criteria. We propose here to use a pairwise
ranking approach (Cohen et al., 1998). We seek a network that computes a higher score when
given a legal phrase than when given an incorrect phrase. Because the ranking literature often deals
with information retrieval applications, many authors define complex ranking criteria that give more
weight to the ordering of the best ranking instances (see Burges et al., 2007; Clémençon and Vayatis,
2007). However, in our case, we do not want to emphasize the most common phrase over the rare
but legal phrases. Therefore we use a simple pairwise criterion.

We consider a window approach network, as described in Section 3.3.1 and Figure 1, with
parameters θ which outputs a score fθ(x) given a window of text x = [w]dwin1 . We minimize the
ranking criterion with respect to θ:

θ !→ ∑
x∈X

∑
w∈D

max
{

0 , 1− fθ(x)+ fθ(x
(w))

}

, (17)

where X is the set of all possible text windows with dwin words coming from our training corpus, D
is the dictionary of words, and x(w) denotes the text window obtained by replacing the central word
of text window [w]dwin1 by the word w.

Okanohara and Tsujii (2007) use a related approach to avoiding the entropy criteria using a
binary classification approach (correct/incorrect phrase). Their work focuses on using a kernel
classifier, and not on learning word embeddings as we do here. Smith and Eisner (2005) also
propose a contrastive criterion which estimates the likelihood of the data conditioned to a “negative”
neighborhood. They consider various data neighborhoods, including sentences of length dwin drawn
from Ddwin . Their goal was however to perform well on some tagging task on fully unsupervised
data, rather than obtaining generic word embeddings useful for other tasks.

4.3 Training Language Models

The language model network was trained by stochastic gradient minimization of the ranking crite-
rion (17), sampling a sentence-word pair (s, w) at each iteration.

16. However, Klein and Manning (2002) describe a rare example of realistic unsupervised grammar induction using a
cross-entropy approach on binary-branching parsing trees, that is, by forcing the system to generate a hierarchical
representation.

2512

COLLOBERT, WESTON, BOTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

can be extremely demanding, and sophisticated approximations are required. More importantly for
us, neither work leads to significant word embeddings being reported.

Shannon (1951) has estimated the entropy of the English language between 0.6 and 1.3 bits per
character by asking human subjects to guess upcoming characters. Cover and King (1978) give
a lower bound of 1.25 bits per character using a subtle gambling approach. Meanwhile, using a
simple word trigram model, Brown et al. (1992b) reach 1.75 bits per character. Teahan and Cleary
(1996) obtain entropies as low as 1.46 bits per character using variable length character n-grams.
The human subjects rely of course on all their knowledge of the language and of the world. Can we
learn the grammatical structure of the English language and the nature of the world by leveraging
the 0.2 bits per character that separate human subjects from simple n-grammodels? Since such tasks
certainly require high capacity models, obtaining sufficiently small confidence intervals on the test
set entropy may require prohibitively large training sets.16 The entropy criterion lacks dynamical
range because its numerical value is largely determined by the most frequent phrases. In order to
learn syntax, rare but legal phrases are no less significant than common phrases.

It is therefore desirable to define alternative training criteria. We propose here to use a pairwise
ranking approach (Cohen et al., 1998). We seek a network that computes a higher score when
given a legal phrase than when given an incorrect phrase. Because the ranking literature often deals
with information retrieval applications, many authors define complex ranking criteria that give more
weight to the ordering of the best ranking instances (see Burges et al., 2007; Clémençon and Vayatis,
2007). However, in our case, we do not want to emphasize the most common phrase over the rare
but legal phrases. Therefore we use a simple pairwise criterion.

We consider a window approach network, as described in Section 3.3.1 and Figure 1, with
parameters θ which outputs a score fθ(x) given a window of text x = [w]dwin1 . We minimize the
ranking criterion with respect to θ:

θ !→ ∑
x∈X

∑
w∈D

max
{

0 , 1− fθ(x)+ fθ(x
(w))

}

, (17)

where X is the set of all possible text windows with dwin words coming from our training corpus, D
is the dictionary of words, and x(w) denotes the text window obtained by replacing the central word
of text window [w]dwin1 by the word w.

Okanohara and Tsujii (2007) use a related approach to avoiding the entropy criteria using a
binary classification approach (correct/incorrect phrase). Their work focuses on using a kernel
classifier, and not on learning word embeddings as we do here. Smith and Eisner (2005) also
propose a contrastive criterion which estimates the likelihood of the data conditioned to a “negative”
neighborhood. They consider various data neighborhoods, including sentences of length dwin drawn
from Ddwin . Their goal was however to perform well on some tagging task on fully unsupervised
data, rather than obtaining generic word embeddings useful for other tasks.

4.3 Training Language Models

The language model network was trained by stochastic gradient minimization of the ranking crite-
rion (17), sampling a sentence-word pair (s, w) at each iteration.

16. However, Klein and Manning (2002) describe a rare example of realistic unsupervised grammar induction using a
cross-entropy approach on binary-branching parsing trees, that is, by forcing the system to generate a hierarchical
representation.

2512

Collobert	 et	 al.	 (2011)	
•  631M	 word	 tokens,	 100k	 vocab	 size,	 11-‐word	
input	 window,	 4	 weeks	 of	 training	

•  they	 didn’t	 care	 about	 ge[ng	 good	
perplexiTes,	 just	 good	 word	 embeddings	 for	
their	 downstream	 NLP	 tasks	

•  so	 a	 pairwise	 ranking	 loss	 makes	 sense	 in	 this	
context	

7	

Collobert	 et	 al.	 (2011)	

8	

•  word	 embedding	 nearest	 neighbors:	 COLLOBERT, WESTON, BOTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

FRANCE JESUS XBOX REDDISH SCRATCHED MEGABITS
454 1973 6909 11724 29869 87025

AUSTRIA GOD AMIGA GREENISH NAILED OCTETS
BELGIUM SATI PLAYSTATION BLUISH SMASHED MB/S
GERMANY CHRIST MSX PINKISH PUNCHED BIT/S
ITALY SATAN IPOD PURPLISH POPPED BAUD
GREECE KALI SEGA BROWNISH CRIMPED CARATS
SWEDEN INDRA PSNUMBER GREYISH SCRAPED KBIT/S
NORWAY VISHNU HD GRAYISH SCREWED MEGAHERTZ
EUROPE ANANDA DREAMCAST WHITISH SECTIONED MEGAPIXELS
HUNGARY PARVATI GEFORCE SILVERY SLASHED GBIT/S

SWITZERLAND GRACE CAPCOM YELLOWISH RIPPED AMPERES

Table 7: Word embeddings in the word lookup table of the language model neural network LM1
trained with a dictionary of size 100,000. For each column the queried word is followed
by its index in the dictionary (higher means more rare) and its 10 nearest neighbors (using
the Euclidean metric, which was chosen arbitrarily).

and semantic properties of the neighbors are clearly related to those of the query word. These
results are far more satisfactory than those reported in Table 7 for embeddings obtained using purely
supervised training of the benchmark NLP tasks.

4.5 Semi-supervised Benchmark Results

Semi-supervised learning has been the object of much attention during the last few years (see
Chapelle et al., 2006). Previous semi-supervised approaches for NLP can be roughly categorized as
follows:

• Ad-hoc approaches such as Rosenfeld and Feldman (2007) for relation extraction.

• Self-training approaches, such as Ueffing et al. (2007) for machine translation, and McClosky
et al. (2006) for parsing. These methods augment the labeled training set with examples from
the unlabeled data set using the labels predicted by the model itself. Transductive approaches,
such as Joachims (1999) for text classification can be viewed as a refined form of self-training.

• Parameter sharing approaches such as Ando and Zhang (2005); Suzuki and Isozaki (2008).
Ando and Zhang propose a multi-task approach where they jointly train models sharing cer-
tain parameters. They train POS and NER models together with a language model (trained on
15 million words) consisting of predicting words given the surrounding tokens. Suzuki and
Isozaki embed a generative model (Hidden Markov Model) inside a CRF for POS, Chunking
and NER. The generative model is trained on one billion words. These approaches should
be seen as a linear counterpart of our work. Using multilayer models vastly expands the
parameter sharing opportunities (see Section 5).

Our approach simply consists of initializing the word lookup tables of the supervised networks
with the embeddings computed by the language models. Supervised training is then performed as
in Section 3.5. In particular the supervised training stage is free to modify the lookup tables. This
sequential approach is computationally convenient because it separates the lengthy training of the

2514

word2vec	 (Mikolov	 et	 al.,	 2013a)	

9	

word2vec	 (Mikolov	 et	 al.,	 2013b)	

10	

Distributed Representations of Words and Phrases
and their Compositionality

Tomas Mikolov
Google Inc.

Mountain View
mikolov@google.com

Ilya Sutskever
Google Inc.

Mountain View
ilyasu@google.com

Kai Chen
Google Inc.

Mountain View
kai@google.com

Greg Corrado
Google Inc.

Mountain View
gcorrado@google.com

Jeffrey Dean
Google Inc.

Mountain View
jeff@google.com

Abstract

The recently introduced continuous Skip-gram model is an efficient method for
learning high-quality distributed vector representations that capture a large num-
ber of precise syntactic and semantic word relationships. In this paper we present
several extensions that improve both the quality of the vectors and the training
speed. By subsampling of the frequent words we obtain significant speedup and
also learn more regular word representations. We also describe a simple alterna-
tive to the hierarchical softmax called negative sampling.
An inherent limitation of word representations is their indifference to word order
and their inability to represent idiomatic phrases. For example, the meanings of
“Canada” and “Air” cannot be easily combined to obtain “Air Canada”. Motivated
by this example, we present a simple method for finding phrases in text, and show
that learning good vector representations for millions of phrases is possible.

1 Introduction

Distributed representations of words in a vector space help learning algorithms to achieve better
performance in natural language processing tasks by grouping similar words. One of the earliest use
of word representations dates back to 1986 due to Rumelhart, Hinton, and Williams [13]. This idea
has since been applied to statistical language modeling with considerable success [1]. The follow
up work includes applications to automatic speech recognition and machine translation [14, 7], and
a wide range of NLP tasks [2, 20, 15, 3, 18, 19, 9].

Recently, Mikolov et al. [8] introduced the Skip-gram model, an efficient method for learning high-
quality vector representations of words from large amounts of unstructured text data. Unlike most
of the previously used neural network architectures for learning word vectors, training of the Skip-
gram model (see Figure 1) does not involve dense matrix multiplications. This makes the training
extremely efficient: an optimized single-machine implementation can train on more than 100 billion
words in one day.

The word representations computed using neural networks are very interesting because the learned
vectors explicitly encode many linguistic regularities and patterns. Somewhat surprisingly, many of
these patterns can be represented as linear translations. For example, the result of a vector calcula-
tion vec(“Madrid”) - vec(“Spain”) + vec(“France”) is closer to vec(“Paris”) than to any other word
vector [9, 8].

1

Mikolov	 et	 al.	 (2013a)	
11	

12	

•  like	 Collobert	 et	 al.	 (2011),	 except:	
–  no	 hidden	 layers	
–  averages	 vectors	 of	 context	 words	
rather	 than	 concatenaTng	

–  objecTve	 is	 to	 classify	 center	 word,	
so	 it’s	 a	 mulTclass	 classifier	 over	 all	
possible	 words	 (could	 be	 very	 slow!)	

–  Collobert	 et	 al	 were	 essenTally	 just	
training	 a	 binary	 classifier,	 where	
negaTve	 examples	 are	 drawn	
randomly	 from	 vocab	

CBOW	

Mikolov	 et	 al.	 (2013a)	
13	

skip-‐gram	
•  skip-‐gram	 objecTve:	

14	

sum	 over	
posiTons	 in	
corpus	

sum	 over	 context	
words	 in	 window	
(size	 =	 2c	 +	 1)	

15	

“output”	 or	
“outside”	 vector	

“input”	 or	
“inside”	 vector	

skip-‐gram	 model	 uses	 two	 different	 vector	 spaces:	

skip-‐gram	 model	 uses	 two	 different	 vector	 spaces:	
	
	
why?	
which	 should	 we	 use	 as	 our	 word	 embeddings?	

16	

17	

normalizaTon	 requires	 sum	 over	 what?	

18	

normalizaTon	 requires	 sum	 over	 enTre	 vocabulary:	

Hierarchical	 Sojmax	
(Morin	 and	 Bengio,	 2005)	

•  based	 on	 a	 new	 generaTve	 story	 for	 	
•  but	 the	 generaTve	 story	 is	 so	 simple!	
–  just	 draw	 from	 the	 condiTonal	 distribuTon	

•  how	 can	 we	 make	 it	 more	 efficient?	
•  we	 sTll	 need	 it	 to	 be	 true	 that:	

19	

Hierarchical	 Sojmax	
(Morin	 and	 Bengio,	 2005)	

•  based	 on	 a	 new	 generaTve	 story	 for	 	
•  but	 the	 generaTve	 story	 is	 so	 simple!	
–  just	 draw	 from	 the	 condiTonal	 distribuTon	

•  how	 can	 we	 make	 it	 more	 efficient?	
•  we	 sTll	 need	 it	 to	 be	 true	 that:	

20	

Hierarchical	 Sojmax	 in	 word2vec	
•  new	 generaTve	 story	 for	 	
–  a	 random	 walk	 through	 the	 vocabulary	 biased	 by	 v	

•  idea:	 	
–  build	 binary	 tree	 to	 represent	 vocabulary	
–  to	 generate	 a	 context	 word	 of	 center	 word	 v,	 start	 at	
the	 root	 and	 keep	 flipping	 biased	 coins	 (biased	
according	 to	 v)	 to	 choose	 lej	 or	 right	

–  stop	 on	 reaching	 a	 leaf	
•  parameters	 of	 this	 generaTve	 model	 are	 vectors	
for	 individual	 split	 points	 in	 the	 tree,	 and	 input	
vector	 of	 v	

21	

GeneraTve	 Story	 for	

22	

ROOT	

the	

red	

dog	 …	

flip	 a	 coin	 with	 Pr(heads)	 =	 	
if	 tails,	

	 output	 “the”	 as	 u	
if	 heads,	

	 flip	 coin	 w/	 Pr(heads)	 =	
if	 heads,	

	 output	 “red”	 as	 u	
if	 tails,	

	 flip	 coin	 w/	 Pr(heads)	 =	 	
…	

1	

2	

GeneraTve	 Story	 for	

23	

ROOT	

the	

red	

dog	 …	

flip	 a	 coin	 with	 Pr(heads)	 =	 	
if	 tails,	

	 output	 “the”	 as	 u	
if	 heads,	

	 flip	 coin	 w/	 Pr(heads)	 =	
if	 heads,	

	 output	 “red”	 as	 u	
…	

1	

2	

What	 is	 the	 normalizaTon	 constant?	

GeneraTve	 Story	 for	

24	

ROOT	

the	

red	

dog	 …	

flip	 a	 coin	 with	 Pr(heads)	 =	 	
if	 tails,	

	 output	 “the”	 as	 u	
if	 heads,	

	 flip	 coin	 w/	 Pr(heads)	 =	
if	 heads,	

	 output	 “red”	 as	 u	
…	

1	

2	

What	 is	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ?	

GeneraTve	 Story	 for	

25	

ROOT	

the	

red	

dog	 …	

flip	 a	 coin	 with	 Pr(heads)	 =	 	
if	 tails,	

	 output	 “the”	 as	 u	
if	 heads,	

	 flip	 coin	 w/	 Pr(heads)	 =	
if	 heads,	

	 output	 “red”	 as	 u	
…	

1	

2	

Can	 you	 prove	 that	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ?	

Hierarchical	 Sojmax	 for	 Skip-‐Gram	
(Mikolov	 et	 al.,	 2013)	

•  each	 word	 has	 a	 unique	 path	 from	 ROOT	
•  rather	 than	 learn	 output	 vectors	 for	 all	 words,	
learn	 output	 vectors	 only	 for	 internal	 nodes	 of	
the	 binary	 tree	

•  how	 should	 we	 arrange	 the	 words	 into	 a	
binary	 tree?	

26	

•  How	 about	 this	 binary	 tree?	

27	

ROOT	

the	

Gomez-‐like	

…	

obtusely	

a	

Albertopolis	

•  How	 about	 this	 binary	 tree?	

28	

ROOT	

the	

Gomez-‐like	

…	

obtusely	

a	

Albertopolis	

Why	 is	 this	 tree	 bad?	
Give	 two	 reasons.	

•  How	 about	 this	 binary	 tree?	

29	

ROOT	

Gomez-‐like	

a	

…	

the	

obtusely	

that	

Why	 is	 this	 tree	 bad?	

•  word2vec	 uses	 Huffman	 coding	 (common	 words	
have	 short	 codes,	 i.e.,	 are	 near	 top	 of	 tree)	

30	

NegaTve	 Sampling	
(Mikolov	 et	 al.,	 2013)	

•  rather	 than	 sum	 over	 enTre	 vocabulary,	
generate	 samples	 and	 sum	 over	 them	

•  instead	 of	 a	 mulTclass	 classifier,	 use	 a	 binary	
classifier:	

•  similar	 to	 idea	 of	 Collobert	 et	 al	 but	 uses	 log	
loss	 instead	 of	 hinge	 loss	

31	

NegaTve	 Sampling	
(Mikolov	 et	 al.,	 2013)	

•  NEG	 contains	 2-‐20	 words	 sampled	 from	 some	
distribuTon	
– e.g.,	 uniform,	 unigram,	 or	 smoothed	 unigram	
– smoothed:	 raise	 probabiliTes	 to	 power	 ¾,	
renormalize	 to	 get	 a	 distribuTon	

32	

AlternaTves	

•  Noise-‐ContrasTve	 EsTmaTon	 (Gutmann	 &	 Hyvarinen,	
2010;	 2012)	

•  Applied	 to	 language	 modeling	 by	 Mnih	 &	 Teh	 (2012)	

33	

GloVe	
(Pennington	 et	 al.,	 2014)	

34	

GloVe: Global Vectors for Word Representation

Jeffrey Pennington, Richard Socher, Christopher D. Manning
Computer Science Department, Stanford University, Stanford, CA 94305

jpennin@stanford.edu, richard@socher.org, manning@stanford.edu

Abstract

Recent methods for learning vector space
representations of words have succeeded
in capturing fine-grained semantic and
syntactic regularities using vector arith-
metic, but the origin of these regularities
has remained opaque. We analyze and
make explicit the model properties needed
for such regularities to emerge in word
vectors. The result is a new global log-
bilinear regression model that combines
the advantages of the two major model
families in the literature: global matrix
factorization and local context window
methods. Our model efficiently leverages
statistical information by training only on
the nonzero elements in a word-word co-
occurrence matrix, rather than on the en-
tire sparse matrix or on individual context
windows in a large corpus. The model pro-
duces a vector space with meaningful sub-
structure, as evidenced by its performance
of 75% on a recent word analogy task. It
also outperforms related models on simi-
larity tasks and named entity recognition.

1 Introduction

Semantic vector space models of language repre-
sent each word with a real-valued vector. These
vectors can be used as features in a variety of ap-
plications, such as information retrieval (Manning
et al., 2008), document classification (Sebastiani,
2002), question answering (Tellex et al., 2003),
named entity recognition (Turian et al., 2010), and
parsing (Socher et al., 2013).

Most word vector methods rely on the distance
or angle between pairs of word vectors as the pri-
mary method for evaluating the intrinsic quality
of such a set of word representations. Recently,
Mikolov et al. (2013c) introduced a new evalua-
tion scheme based on word analogies that probes

the finer structure of the word vector space by ex-
amining not the scalar distance between word vec-
tors, but rather their various dimensions of dif-
ference. For example, the analogy “king is to
queen as man is to woman” should be encoded
in the vector space by the vector equation king �
queen = man � woman. This evaluation scheme
favors models that produce dimensions of mean-
ing, thereby capturing the multi-clustering idea of
distributed representations (Bengio, 2009).

The two main model families for learning word
vectors are: 1) global matrix factorization meth-
ods, such as latent semantic analysis (LSA) (Deer-
wester et al., 1990) and 2) local context window
methods, such as the skip-gram model of Mikolov
et al. (2013c). Currently, both families suffer sig-
nificant drawbacks. While methods like LSA ef-
ficiently leverage statistical information, they do
relatively poorly on the word analogy task, indi-
cating a sub-optimal vector space structure. Meth-
ods like skip-gram may do better on the analogy
task, but they poorly utilize the statistics of the cor-
pus since they train on separate local context win-
dows instead of on global co-occurrence counts.

In this work, we analyze the model properties
necessary to produce linear directions of meaning
and argue that global log-bilinear regression mod-
els are appropriate for doing so. We propose a spe-
cific weighted least squares model that trains on
global word-word co-occurrence counts and thus
makes efficient use of statistics. The model pro-
duces a word vector space with meaningful sub-
structure, as evidenced by its state-of-the-art per-
formance of 75% accuracy on the word analogy
dataset. We also demonstrate that our methods
outperform other current methods on several word
similarity tasks, and also on a common named en-
tity recognition (NER) benchmark.

We provide the source code for the model as
well as trained word vectors at http://nlp.
stanford.edu/projects/glove/.

Other	 Work	 on	 Word	 Embeddings	
•  acTve	 research	 area	 (probably	 too	 acTve)	
•  other	 direcTons:	
– mulTple	 embeddings	 for	 a	 single	 word	
corresponding	 to	 different	 word	 senses	

– using	 subword	 informaTon	 (e.g.,	 characters)	 in	
word	 embeddings	

–  tailoring	 embeddings	 for	 different	 NLP	 tasks	

35	

•  Pretrained	 word	 embeddings	 are	 really	 useful!	

•  What	 about	 embeddings	 for	 phrases	 and	
sentences?	

	

36	

Unsupervised	 Sentence	 Models	

37	

•  How	 are	 sentence	 embeddings	 useful?	
– mulT-‐document	 summarizaTon	
– automaTc	 essay	 grading	
– evaluaTon	 of	 text	 generaTon	 systems	
– machine	 translaTon	
– entailment/inference	

38	

Unsupervised	 Sentence	 Models	
•  how	 should	 we	 evaluate	 sentence	 models?	
•  we	 consider	 two	 kinds	 of	 evaluaTons	 here:	
– sentence	 similarity:	 intrinsic	 evaluaTon	 of	
sentence	 embedding	 space,	 no	 addiTonal	 learned	
parameters	

– sentence	 classificaTon:	 train	 a	 linear	 classifier	
(logisTc	 regression)	 using	 the	 fixed	 sentence	
representaTon	 as	 the	 input	 features	
•  reporTng	 average	 accuracies	 over	 6	 tasks	

39	

