
TTIC	
 31210:	

Advanced	
 Natural	
 Language	
 Processing	

Kevin	
 Gimpel	

Spring	
 2017	

	

Lecture	
 4:	

Word	
 Embeddings	
 (2)	

1	

Collobert	
 et	
 al.	
 (2011)	

2	

Journal of Machine Learning Research 12 (2011) 2493-2537 Submitted 1/10; Revised 11/10; Published 8/11

Natural Language Processing (Almost) from Scratch

Ronan Collobert∗ RONAN@COLLOBERT.COM
Jason Weston† JWESTON@GOOGLE.COM
Léon Bottou‡ LEON@BOTTOU.ORG
Michael Karlen MICHAEL.KARLEN@GMAIL.COM
Koray Kavukcuoglu§ KORAY@CS.NYU.EDU
Pavel Kuksa¶ PKUKSA@CS.RUTGERS.EDU
NEC Laboratories America
4 Independence Way
Princeton, NJ 08540

Editor:Michael Collins

Abstract
We propose a unified neural network architecture and learning algorithm that can be applied to var-
ious natural language processing tasks including part-of-speech tagging, chunking, named entity
recognition, and semantic role labeling. This versatility is achieved by trying to avoid task-specific
engineering and therefore disregarding a lot of prior knowledge. Instead of exploiting man-made
input features carefully optimized for each task, our system learns internal representations on the
basis of vast amounts of mostly unlabeled training data. This work is then used as a basis for
building a freely available tagging system with good performance and minimal computational re-
quirements.
Keywords: natural language processing, neural networks

1. Introduction

Will a computer program ever be able to convert a piece of English text into a programmer friendly
data structure that describes the meaning of the natural language text? Unfortunately, no consensus
has emerged about the form or the existence of such a data structure. Until such fundamental
Articial Intelligence problems are resolved, computer scientists must settle for the reduced objective
of extracting simpler representations that describe limited aspects of the textual information.

These simpler representations are often motivated by specific applications (for instance, bag-
of-words variants for information retrieval), or by our belief that they capture something more gen-
eral about natural language. They can describe syntactic information (e.g., part-of-speech tagging,
chunking, and parsing) or semantic information (e.g., word-sense disambiguation, semantic role
labeling, named entity extraction, and anaphora resolution). Text corpora have been manually an-
notated with such data structures in order to compare the performance of various systems. The
availability of standard benchmarks has stimulated research in Natural Language Processing (NLP)

∗. Ronan Collobert is now with the Idiap Research Institute, Switzerland.
†. Jason Weston is now with Google, New York, NY.
‡. Léon Bottou is now with Microsoft, Redmond, WA.
§. Koray Kavukcuoglu is also with New York University, New York, NY.
¶. Pavel Kuksa is also with Rutgers University, New Brunswick, NJ.

c⃝2011 Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu and Pavel Kuksa.

3	

NATURAL LANGUAGE PROCESSING (ALMOST) FROM SCRATCH

Input Window

Lookup Table

Linear

HardTanh

Linear

Text cat sat on the mat

Feature 1 w1
1 w1

2 . . . w1

N
.
.
.

Feature K wK
1 wK

2 . . . wK
N

LTW 1

.

.

.

LTW K

M1
× ·

M2
× ·

word of interest

d

concat

n
1
hu

n
2
hu

= #tags

Figure 1: Window approach network.

complex features (e.g., extracted from a parse tree) which can impact the computational cost which
might be important for large-scale applications or applications requiring real-time response.

Instead, we advocate a radically different approach: as input we will try to pre-process our
features as little as possible and then use a multilayer neural network (NN) architecture, trained in
an end-to-end fashion. The architecture takes the input sentence and learns several layers of feature
extraction that process the inputs. The features computed by the deep layers of the network are
automatically trained by backpropagation to be relevant to the task. We describe in this section a
general multilayer architecture suitable for all our NLP tasks, which is generalizable to other NLP
tasks as well.

Our architecture is summarized in Figure 1 and Figure 2. The first layer extracts features for
each word. The second layer extracts features from a window of words or from the whole sentence,
treating it as a sequence with local and global structure (i.e., it is not treated like a bag of words).
The following layers are standard NN layers.

3.1 Notations

We consider a neural network fθ(·), with parameters θ. Any feed-forward neural network with L
layers, can be seen as a composition of functions f lθ(·), corresponding to each layer l:

fθ(·) = f Lθ (f L−1θ (. . . f 1θ (·) . . .)) .

2499

Collobert	
 et	
 al.	
 Pairwise	
 Ranking	
 Loss	

4	

•  	
 	
 	
 	
 	
 	
 is	
 training	
 set	
 of	
 11-­‐word	
 windows	

•  	
 	
 	
 	
 	
 	
 is	
 vocabulary	

•  What	
 is	
 going	
 on	
 here?	

– Make	
 actual	
 text	
 window	
 have	
 higher	
 score	
 than	

all	
 windows	
 with	
 center	
 word	
 replaced	
 by	
 w	

Collobert	
 et	
 al.	
 Pairwise	
 Ranking	
 Loss	

5	

•  	
 	
 	
 	
 	
 	
 is	
 training	
 set	
 of	
 11-­‐word	
 windows	

•  	
 	
 	
 	
 	
 	
 is	
 vocabulary	

•  This	
 sTll	
 sums	
 over	
 enTre	
 vocabulary,	
 so	
 it	

should	
 be	
 as	
 slow	
 as	
 log	
 loss…	

•  Why	
 can	
 it	
 be	
 faster?	

– when	
 using	
 SGD,	
 summaTon	
 à	
 sample	

Collobert	
 et	
 al.	
 (2011)	

6	

COLLOBERT, WESTON, BOTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

can be extremely demanding, and sophisticated approximations are required. More importantly for
us, neither work leads to significant word embeddings being reported.

Shannon (1951) has estimated the entropy of the English language between 0.6 and 1.3 bits per
character by asking human subjects to guess upcoming characters. Cover and King (1978) give
a lower bound of 1.25 bits per character using a subtle gambling approach. Meanwhile, using a
simple word trigram model, Brown et al. (1992b) reach 1.75 bits per character. Teahan and Cleary
(1996) obtain entropies as low as 1.46 bits per character using variable length character n-grams.
The human subjects rely of course on all their knowledge of the language and of the world. Can we
learn the grammatical structure of the English language and the nature of the world by leveraging
the 0.2 bits per character that separate human subjects from simple n-grammodels? Since such tasks
certainly require high capacity models, obtaining sufficiently small confidence intervals on the test
set entropy may require prohibitively large training sets.16 The entropy criterion lacks dynamical
range because its numerical value is largely determined by the most frequent phrases. In order to
learn syntax, rare but legal phrases are no less significant than common phrases.

It is therefore desirable to define alternative training criteria. We propose here to use a pairwise
ranking approach (Cohen et al., 1998). We seek a network that computes a higher score when
given a legal phrase than when given an incorrect phrase. Because the ranking literature often deals
with information retrieval applications, many authors define complex ranking criteria that give more
weight to the ordering of the best ranking instances (see Burges et al., 2007; Clémençon and Vayatis,
2007). However, in our case, we do not want to emphasize the most common phrase over the rare
but legal phrases. Therefore we use a simple pairwise criterion.

We consider a window approach network, as described in Section 3.3.1 and Figure 1, with
parameters θ which outputs a score fθ(x) given a window of text x = [w]dwin1 . We minimize the
ranking criterion with respect to θ:

θ !→ ∑
x∈X

∑
w∈D

max
{

0 , 1− fθ(x)+ fθ(x
(w))

}

, (17)

where X is the set of all possible text windows with dwin words coming from our training corpus, D
is the dictionary of words, and x(w) denotes the text window obtained by replacing the central word
of text window [w]dwin1 by the word w.

Okanohara and Tsujii (2007) use a related approach to avoiding the entropy criteria using a
binary classification approach (correct/incorrect phrase). Their work focuses on using a kernel
classifier, and not on learning word embeddings as we do here. Smith and Eisner (2005) also
propose a contrastive criterion which estimates the likelihood of the data conditioned to a “negative”
neighborhood. They consider various data neighborhoods, including sentences of length dwin drawn
from Ddwin . Their goal was however to perform well on some tagging task on fully unsupervised
data, rather than obtaining generic word embeddings useful for other tasks.

4.3 Training Language Models

The language model network was trained by stochastic gradient minimization of the ranking crite-
rion (17), sampling a sentence-word pair (s, w) at each iteration.

16. However, Klein and Manning (2002) describe a rare example of realistic unsupervised grammar induction using a
cross-entropy approach on binary-branching parsing trees, that is, by forcing the system to generate a hierarchical
representation.

2512

COLLOBERT, WESTON, BOTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

can be extremely demanding, and sophisticated approximations are required. More importantly for
us, neither work leads to significant word embeddings being reported.

Shannon (1951) has estimated the entropy of the English language between 0.6 and 1.3 bits per
character by asking human subjects to guess upcoming characters. Cover and King (1978) give
a lower bound of 1.25 bits per character using a subtle gambling approach. Meanwhile, using a
simple word trigram model, Brown et al. (1992b) reach 1.75 bits per character. Teahan and Cleary
(1996) obtain entropies as low as 1.46 bits per character using variable length character n-grams.
The human subjects rely of course on all their knowledge of the language and of the world. Can we
learn the grammatical structure of the English language and the nature of the world by leveraging
the 0.2 bits per character that separate human subjects from simple n-grammodels? Since such tasks
certainly require high capacity models, obtaining sufficiently small confidence intervals on the test
set entropy may require prohibitively large training sets.16 The entropy criterion lacks dynamical
range because its numerical value is largely determined by the most frequent phrases. In order to
learn syntax, rare but legal phrases are no less significant than common phrases.

It is therefore desirable to define alternative training criteria. We propose here to use a pairwise
ranking approach (Cohen et al., 1998). We seek a network that computes a higher score when
given a legal phrase than when given an incorrect phrase. Because the ranking literature often deals
with information retrieval applications, many authors define complex ranking criteria that give more
weight to the ordering of the best ranking instances (see Burges et al., 2007; Clémençon and Vayatis,
2007). However, in our case, we do not want to emphasize the most common phrase over the rare
but legal phrases. Therefore we use a simple pairwise criterion.

We consider a window approach network, as described in Section 3.3.1 and Figure 1, with
parameters θ which outputs a score fθ(x) given a window of text x = [w]dwin1 . We minimize the
ranking criterion with respect to θ:

θ !→ ∑
x∈X

∑
w∈D

max
{

0 , 1− fθ(x)+ fθ(x
(w))

}

, (17)

where X is the set of all possible text windows with dwin words coming from our training corpus, D
is the dictionary of words, and x(w) denotes the text window obtained by replacing the central word
of text window [w]dwin1 by the word w.

Okanohara and Tsujii (2007) use a related approach to avoiding the entropy criteria using a
binary classification approach (correct/incorrect phrase). Their work focuses on using a kernel
classifier, and not on learning word embeddings as we do here. Smith and Eisner (2005) also
propose a contrastive criterion which estimates the likelihood of the data conditioned to a “negative”
neighborhood. They consider various data neighborhoods, including sentences of length dwin drawn
from Ddwin . Their goal was however to perform well on some tagging task on fully unsupervised
data, rather than obtaining generic word embeddings useful for other tasks.

4.3 Training Language Models

The language model network was trained by stochastic gradient minimization of the ranking crite-
rion (17), sampling a sentence-word pair (s, w) at each iteration.

16. However, Klein and Manning (2002) describe a rare example of realistic unsupervised grammar induction using a
cross-entropy approach on binary-branching parsing trees, that is, by forcing the system to generate a hierarchical
representation.

2512

Collobert	
 et	
 al.	
 (2011)	

•  631M	
 word	
 tokens,	
 100k	
 vocab	
 size,	
 11-­‐word	

input	
 window,	
 4	
 weeks	
 of	
 training	

•  they	
 didn’t	
 care	
 about	
 ge[ng	
 good	

perplexiTes,	
 just	
 good	
 word	
 embeddings	
 for	

their	
 downstream	
 NLP	
 tasks	

•  so	
 a	
 pairwise	
 ranking	
 loss	
 makes	
 sense	
 in	
 this	

context	

7	

Collobert	
 et	
 al.	
 (2011)	

8	

•  word	
 embedding	
 nearest	
 neighbors:	
 COLLOBERT, WESTON, BOTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

FRANCE JESUS XBOX REDDISH SCRATCHED MEGABITS
454 1973 6909 11724 29869 87025

AUSTRIA GOD AMIGA GREENISH NAILED OCTETS
BELGIUM SATI PLAYSTATION BLUISH SMASHED MB/S
GERMANY CHRIST MSX PINKISH PUNCHED BIT/S
ITALY SATAN IPOD PURPLISH POPPED BAUD
GREECE KALI SEGA BROWNISH CRIMPED CARATS
SWEDEN INDRA PSNUMBER GREYISH SCRAPED KBIT/S
NORWAY VISHNU HD GRAYISH SCREWED MEGAHERTZ
EUROPE ANANDA DREAMCAST WHITISH SECTIONED MEGAPIXELS
HUNGARY PARVATI GEFORCE SILVERY SLASHED GBIT/S

SWITZERLAND GRACE CAPCOM YELLOWISH RIPPED AMPERES

Table 7: Word embeddings in the word lookup table of the language model neural network LM1
trained with a dictionary of size 100,000. For each column the queried word is followed
by its index in the dictionary (higher means more rare) and its 10 nearest neighbors (using
the Euclidean metric, which was chosen arbitrarily).

and semantic properties of the neighbors are clearly related to those of the query word. These
results are far more satisfactory than those reported in Table 7 for embeddings obtained using purely
supervised training of the benchmark NLP tasks.

4.5 Semi-supervised Benchmark Results

Semi-supervised learning has been the object of much attention during the last few years (see
Chapelle et al., 2006). Previous semi-supervised approaches for NLP can be roughly categorized as
follows:

• Ad-hoc approaches such as Rosenfeld and Feldman (2007) for relation extraction.

• Self-training approaches, such as Ueffing et al. (2007) for machine translation, and McClosky
et al. (2006) for parsing. These methods augment the labeled training set with examples from
the unlabeled data set using the labels predicted by the model itself. Transductive approaches,
such as Joachims (1999) for text classification can be viewed as a refined form of self-training.

• Parameter sharing approaches such as Ando and Zhang (2005); Suzuki and Isozaki (2008).
Ando and Zhang propose a multi-task approach where they jointly train models sharing cer-
tain parameters. They train POS and NER models together with a language model (trained on
15 million words) consisting of predicting words given the surrounding tokens. Suzuki and
Isozaki embed a generative model (Hidden Markov Model) inside a CRF for POS, Chunking
and NER. The generative model is trained on one billion words. These approaches should
be seen as a linear counterpart of our work. Using multilayer models vastly expands the
parameter sharing opportunities (see Section 5).

Our approach simply consists of initializing the word lookup tables of the supervised networks
with the embeddings computed by the language models. Supervised training is then performed as
in Section 3.5. In particular the supervised training stage is free to modify the lookup tables. This
sequential approach is computationally convenient because it separates the lengthy training of the

2514

word2vec	
 (Mikolov	
 et	
 al.,	
 2013a)	

9	

word2vec	
 (Mikolov	
 et	
 al.,	
 2013b)	

10	

Distributed Representations of Words and Phrases
and their Compositionality

Tomas Mikolov
Google Inc.

Mountain View
mikolov@google.com

Ilya Sutskever
Google Inc.

Mountain View
ilyasu@google.com

Kai Chen
Google Inc.

Mountain View
kai@google.com

Greg Corrado
Google Inc.

Mountain View
gcorrado@google.com

Jeffrey Dean
Google Inc.

Mountain View
jeff@google.com

Abstract

The recently introduced continuous Skip-gram model is an efficient method for
learning high-quality distributed vector representations that capture a large num-
ber of precise syntactic and semantic word relationships. In this paper we present
several extensions that improve both the quality of the vectors and the training
speed. By subsampling of the frequent words we obtain significant speedup and
also learn more regular word representations. We also describe a simple alterna-
tive to the hierarchical softmax called negative sampling.
An inherent limitation of word representations is their indifference to word order
and their inability to represent idiomatic phrases. For example, the meanings of
“Canada” and “Air” cannot be easily combined to obtain “Air Canada”. Motivated
by this example, we present a simple method for finding phrases in text, and show
that learning good vector representations for millions of phrases is possible.

1 Introduction

Distributed representations of words in a vector space help learning algorithms to achieve better
performance in natural language processing tasks by grouping similar words. One of the earliest use
of word representations dates back to 1986 due to Rumelhart, Hinton, and Williams [13]. This idea
has since been applied to statistical language modeling with considerable success [1]. The follow
up work includes applications to automatic speech recognition and machine translation [14, 7], and
a wide range of NLP tasks [2, 20, 15, 3, 18, 19, 9].

Recently, Mikolov et al. [8] introduced the Skip-gram model, an efficient method for learning high-
quality vector representations of words from large amounts of unstructured text data. Unlike most
of the previously used neural network architectures for learning word vectors, training of the Skip-
gram model (see Figure 1) does not involve dense matrix multiplications. This makes the training
extremely efficient: an optimized single-machine implementation can train on more than 100 billion
words in one day.

The word representations computed using neural networks are very interesting because the learned
vectors explicitly encode many linguistic regularities and patterns. Somewhat surprisingly, many of
these patterns can be represented as linear translations. For example, the result of a vector calcula-
tion vec(“Madrid”) - vec(“Spain”) + vec(“France”) is closer to vec(“Paris”) than to any other word
vector [9, 8].

1

Mikolov	
 et	
 al.	
 (2013a)	

11	

12	

•  like	
 Collobert	
 et	
 al.	
 (2011),	
 except:	

–  no	
 hidden	
 layers	

–  averages	
 vectors	
 of	
 context	
 words	

rather	
 than	
 concatenaTng	

–  objecTve	
 is	
 to	
 classify	
 center	
 word,	

so	
 it’s	
 a	
 mulTclass	
 classifier	
 over	
 all	

possible	
 words	
 (could	
 be	
 very	
 slow!)	

–  Collobert	
 et	
 al	
 were	
 essenTally	
 just	

training	
 a	
 binary	
 classifier,	
 where	

negaTve	
 examples	
 are	
 drawn	

randomly	
 from	
 vocab	

CBOW	

Mikolov	
 et	
 al.	
 (2013a)	

13	

skip-­‐gram	

•  skip-­‐gram	
 objecTve:	

14	

sum	
 over	

posiTons	
 in	

corpus	

sum	
 over	
 context	

words	
 in	
 window	

(size	
 =	
 2c	
 +	
 1)	

15	

“output”	
 or	

“outside”	
 vector	

“input”	
 or	

“inside”	
 vector	

skip-­‐gram	
 model	
 uses	
 two	
 different	
 vector	
 spaces:	

skip-­‐gram	
 model	
 uses	
 two	
 different	
 vector	
 spaces:	

	

	

why?	

which	
 should	
 we	
 use	
 as	
 our	
 word	
 embeddings?	

16	

17	

normalizaTon	
 requires	
 sum	
 over	
 what?	

18	

normalizaTon	
 requires	
 sum	
 over	
 enTre	
 vocabulary:	

Hierarchical	
 Sojmax	

(Morin	
 and	
 Bengio,	
 2005)	

•  based	
 on	
 a	
 new	
 generaTve	
 story	
 for	
 	

•  but	
 the	
 generaTve	
 story	
 is	
 so	
 simple!	

–  just	
 draw	
 from	
 the	
 condiTonal	
 distribuTon	

•  how	
 can	
 we	
 make	
 it	
 more	
 efficient?	

•  we	
 sTll	
 need	
 it	
 to	
 be	
 true	
 that:	

19	

Hierarchical	
 Sojmax	

(Morin	
 and	
 Bengio,	
 2005)	

•  based	
 on	
 a	
 new	
 generaTve	
 story	
 for	
 	

•  but	
 the	
 generaTve	
 story	
 is	
 so	
 simple!	

–  just	
 draw	
 from	
 the	
 condiTonal	
 distribuTon	

•  how	
 can	
 we	
 make	
 it	
 more	
 efficient?	

•  we	
 sTll	
 need	
 it	
 to	
 be	
 true	
 that:	

20	

Hierarchical	
 Sojmax	
 in	
 word2vec	

•  new	
 generaTve	
 story	
 for	
 	

–  a	
 random	
 walk	
 through	
 the	
 vocabulary	
 biased	
 by	
 v	

•  idea:	
 	

–  build	
 binary	
 tree	
 to	
 represent	
 vocabulary	

–  to	
 generate	
 a	
 context	
 word	
 of	
 center	
 word	
 v,	
 start	
 at	

the	
 root	
 and	
 keep	
 flipping	
 biased	
 coins	
 (biased	

according	
 to	
 v)	
 to	
 choose	
 lej	
 or	
 right	

–  stop	
 on	
 reaching	
 a	
 leaf	

•  parameters	
 of	
 this	
 generaTve	
 model	
 are	
 vectors	

for	
 individual	
 split	
 points	
 in	
 the	
 tree,	
 and	
 input	

vector	
 of	
 v	

21	

GeneraTve	
 Story	
 for	

22	

ROOT	

the	

red	

dog	
 …	

flip	
 a	
 coin	
 with	
 Pr(heads)	
 =	
 	

if	
 tails,	

	
 output	
 “the”	
 as	
 u	

if	
 heads,	

	
 flip	
 coin	
 w/	
 Pr(heads)	
 =	

if	
 heads,	

	
 output	
 “red”	
 as	
 u	

if	
 tails,	

	
 flip	
 coin	
 w/	
 Pr(heads)	
 =	
 	

…	

1	

2	

GeneraTve	
 Story	
 for	

23	

ROOT	

the	

red	

dog	
 …	

flip	
 a	
 coin	
 with	
 Pr(heads)	
 =	
 	

if	
 tails,	

	
 output	
 “the”	
 as	
 u	

if	
 heads,	

	
 flip	
 coin	
 w/	
 Pr(heads)	
 =	

if	
 heads,	

	
 output	
 “red”	
 as	
 u	

…	

1	

2	

What	
 is	
 the	
 normalizaTon	
 constant?	

GeneraTve	
 Story	
 for	

24	

ROOT	

the	

red	

dog	
 …	

flip	
 a	
 coin	
 with	
 Pr(heads)	
 =	
 	

if	
 tails,	

	
 output	
 “the”	
 as	
 u	

if	
 heads,	

	
 flip	
 coin	
 w/	
 Pr(heads)	
 =	

if	
 heads,	

	
 output	
 “red”	
 as	
 u	

…	

1	

2	

What	
 is	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ?	

GeneraTve	
 Story	
 for	

25	

ROOT	

the	

red	

dog	
 …	

flip	
 a	
 coin	
 with	
 Pr(heads)	
 =	
 	

if	
 tails,	

	
 output	
 “the”	
 as	
 u	

if	
 heads,	

	
 flip	
 coin	
 w/	
 Pr(heads)	
 =	

if	
 heads,	

	
 output	
 “red”	
 as	
 u	

…	

1	

2	

Can	
 you	
 prove	
 that	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ?	

Hierarchical	
 Sojmax	
 for	
 Skip-­‐Gram	

(Mikolov	
 et	
 al.,	
 2013)	

•  each	
 word	
 has	
 a	
 unique	
 path	
 from	
 ROOT	

•  rather	
 than	
 learn	
 output	
 vectors	
 for	
 all	
 words,	

learn	
 output	
 vectors	
 only	
 for	
 internal	
 nodes	
 of	

the	
 binary	
 tree	

•  how	
 should	
 we	
 arrange	
 the	
 words	
 into	
 a	

binary	
 tree?	

26	

•  How	
 about	
 this	
 binary	
 tree?	

27	

ROOT	

the	

Gomez-­‐like	

…	

obtusely	

a	

Albertopolis	

•  How	
 about	
 this	
 binary	
 tree?	

28	

ROOT	

the	

Gomez-­‐like	

…	

obtusely	

a	

Albertopolis	

Why	
 is	
 this	
 tree	
 bad?	

Give	
 two	
 reasons.	

•  How	
 about	
 this	
 binary	
 tree?	

29	

ROOT	

Gomez-­‐like	

a	

…	

the	

obtusely	

that	

Why	
 is	
 this	
 tree	
 bad?	

•  word2vec	
 uses	
 Huffman	
 coding	
 (common	
 words	

have	
 short	
 codes,	
 i.e.,	
 are	
 near	
 top	
 of	
 tree)	

30	

NegaTve	
 Sampling	

(Mikolov	
 et	
 al.,	
 2013)	

•  rather	
 than	
 sum	
 over	
 enTre	
 vocabulary,	

generate	
 samples	
 and	
 sum	
 over	
 them	

•  instead	
 of	
 a	
 mulTclass	
 classifier,	
 use	
 a	
 binary	

classifier:	

•  similar	
 to	
 idea	
 of	
 Collobert	
 et	
 al	
 but	
 uses	
 log	

loss	
 instead	
 of	
 hinge	
 loss	

31	

NegaTve	
 Sampling	

(Mikolov	
 et	
 al.,	
 2013)	

•  NEG	
 contains	
 2-­‐20	
 words	
 sampled	
 from	
 some	

distribuTon	

– e.g.,	
 uniform,	
 unigram,	
 or	
 smoothed	
 unigram	

– smoothed:	
 raise	
 probabiliTes	
 to	
 power	
 ¾,	

renormalize	
 to	
 get	
 a	
 distribuTon	

32	

AlternaTves	

•  Noise-­‐ContrasTve	
 EsTmaTon	
 (Gutmann	
 &	
 Hyvarinen,	

2010;	
 2012)	

•  Applied	
 to	
 language	
 modeling	
 by	
 Mnih	
 &	
 Teh	
 (2012)	

33	

GloVe	

(Pennington	
 et	
 al.,	
 2014)	

34	

GloVe: Global Vectors for Word Representation

Jeffrey Pennington, Richard Socher, Christopher D. Manning
Computer Science Department, Stanford University, Stanford, CA 94305

jpennin@stanford.edu, richard@socher.org, manning@stanford.edu

Abstract

Recent methods for learning vector space
representations of words have succeeded
in capturing fine-grained semantic and
syntactic regularities using vector arith-
metic, but the origin of these regularities
has remained opaque. We analyze and
make explicit the model properties needed
for such regularities to emerge in word
vectors. The result is a new global log-
bilinear regression model that combines
the advantages of the two major model
families in the literature: global matrix
factorization and local context window
methods. Our model efficiently leverages
statistical information by training only on
the nonzero elements in a word-word co-
occurrence matrix, rather than on the en-
tire sparse matrix or on individual context
windows in a large corpus. The model pro-
duces a vector space with meaningful sub-
structure, as evidenced by its performance
of 75% on a recent word analogy task. It
also outperforms related models on simi-
larity tasks and named entity recognition.

1 Introduction

Semantic vector space models of language repre-
sent each word with a real-valued vector. These
vectors can be used as features in a variety of ap-
plications, such as information retrieval (Manning
et al., 2008), document classification (Sebastiani,
2002), question answering (Tellex et al., 2003),
named entity recognition (Turian et al., 2010), and
parsing (Socher et al., 2013).

Most word vector methods rely on the distance
or angle between pairs of word vectors as the pri-
mary method for evaluating the intrinsic quality
of such a set of word representations. Recently,
Mikolov et al. (2013c) introduced a new evalua-
tion scheme based on word analogies that probes

the finer structure of the word vector space by ex-
amining not the scalar distance between word vec-
tors, but rather their various dimensions of dif-
ference. For example, the analogy “king is to
queen as man is to woman” should be encoded
in the vector space by the vector equation king �
queen = man � woman. This evaluation scheme
favors models that produce dimensions of mean-
ing, thereby capturing the multi-clustering idea of
distributed representations (Bengio, 2009).

The two main model families for learning word
vectors are: 1) global matrix factorization meth-
ods, such as latent semantic analysis (LSA) (Deer-
wester et al., 1990) and 2) local context window
methods, such as the skip-gram model of Mikolov
et al. (2013c). Currently, both families suffer sig-
nificant drawbacks. While methods like LSA ef-
ficiently leverage statistical information, they do
relatively poorly on the word analogy task, indi-
cating a sub-optimal vector space structure. Meth-
ods like skip-gram may do better on the analogy
task, but they poorly utilize the statistics of the cor-
pus since they train on separate local context win-
dows instead of on global co-occurrence counts.

In this work, we analyze the model properties
necessary to produce linear directions of meaning
and argue that global log-bilinear regression mod-
els are appropriate for doing so. We propose a spe-
cific weighted least squares model that trains on
global word-word co-occurrence counts and thus
makes efficient use of statistics. The model pro-
duces a word vector space with meaningful sub-
structure, as evidenced by its state-of-the-art per-
formance of 75% accuracy on the word analogy
dataset. We also demonstrate that our methods
outperform other current methods on several word
similarity tasks, and also on a common named en-
tity recognition (NER) benchmark.

We provide the source code for the model as
well as trained word vectors at http://nlp.
stanford.edu/projects/glove/.

Other	
 Work	
 on	
 Word	
 Embeddings	

•  acTve	
 research	
 area	
 (probably	
 too	
 acTve)	

•  other	
 direcTons:	

– mulTple	
 embeddings	
 for	
 a	
 single	
 word	

corresponding	
 to	
 different	
 word	
 senses	

– using	
 subword	
 informaTon	
 (e.g.,	
 characters)	
 in	

word	
 embeddings	

–  tailoring	
 embeddings	
 for	
 different	
 NLP	
 tasks	

35	

•  Pretrained	
 word	
 embeddings	
 are	
 really	
 useful!	

•  What	
 about	
 embeddings	
 for	
 phrases	
 and	

sentences?	

	

36	

Unsupervised	
 Sentence	
 Models	

37	

•  How	
 are	
 sentence	
 embeddings	
 useful?	

– mulT-­‐document	
 summarizaTon	

– automaTc	
 essay	
 grading	

– evaluaTon	
 of	
 text	
 generaTon	
 systems	

– machine	
 translaTon	

– entailment/inference	

38	

Unsupervised	
 Sentence	
 Models	

•  how	
 should	
 we	
 evaluate	
 sentence	
 models?	

•  we	
 consider	
 two	
 kinds	
 of	
 evaluaTons	
 here:	

– sentence	
 similarity:	
 intrinsic	
 evaluaTon	
 of	

sentence	
 embedding	
 space,	
 no	
 addiTonal	
 learned	

parameters	

– sentence	
 classificaTon:	
 train	
 a	
 linear	
 classifier	

(logisTc	
 regression)	
 using	
 the	
 fixed	
 sentence	

representaTon	
 as	
 the	
 input	
 features	

•  reporTng	
 average	
 accuracies	
 over	
 6	
 tasks	

39	

