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Abstract
We propose a unified neural network architecture and learning algorithm that can be applied to var-
ious natural language processing tasks including part-of-speech tagging, chunking, named entity
recognition, and semantic role labeling. This versatility is achieved by trying to avoid task-specific
engineering and therefore disregarding a lot of prior knowledge. Instead of exploiting man-made
input features carefully optimized for each task, our system learns internal representations on the
basis of vast amounts of mostly unlabeled training data. This work is then used as a basis for
building a freely available tagging system with good performance and minimal computational re-
quirements.
Keywords: natural language processing, neural networks

1. Introduction

Will a computer program ever be able to convert a piece of English text into a programmer friendly
data structure that describes the meaning of the natural language text? Unfortunately, no consensus
has emerged about the form or the existence of such a data structure. Until such fundamental
Articial Intelligence problems are resolved, computer scientists must settle for the reduced objective
of extracting simpler representations that describe limited aspects of the textual information.

These simpler representations are often motivated by specific applications (for instance, bag-
of-words variants for information retrieval), or by our belief that they capture something more gen-
eral about natural language. They can describe syntactic information (e.g., part-of-speech tagging,
chunking, and parsing) or semantic information (e.g., word-sense disambiguation, semantic role
labeling, named entity extraction, and anaphora resolution). Text corpora have been manually an-
notated with such data structures in order to compare the performance of various systems. The
availability of standard benchmarks has stimulated research in Natural Language Processing (NLP)
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NATURAL LANGUAGE PROCESSING (ALMOST) FROM SCRATCH
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Figure 1: Window approach network.

complex features (e.g., extracted from a parse tree) which can impact the computational cost which
might be important for large-scale applications or applications requiring real-time response.

Instead, we advocate a radically different approach: as input we will try to pre-process our
features as little as possible and then use a multilayer neural network (NN) architecture, trained in
an end-to-end fashion. The architecture takes the input sentence and learns several layers of feature
extraction that process the inputs. The features computed by the deep layers of the network are
automatically trained by backpropagation to be relevant to the task. We describe in this section a
general multilayer architecture suitable for all our NLP tasks, which is generalizable to other NLP
tasks as well.

Our architecture is summarized in Figure 1 and Figure 2. The first layer extracts features for
each word. The second layer extracts features from a window of words or from the whole sentence,
treating it as a sequence with local and global structure (i.e., it is not treated like a bag of words).
The following layers are standard NN layers.

3.1 Notations

We consider a neural network fθ(·), with parameters θ. Any feed-forward neural network with L
layers, can be seen as a composition of functions f lθ(·), corresponding to each layer l:

fθ(·) = f Lθ ( f L−1θ (. . . f 1θ (·) . . .)) .
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COLLOBERT, WESTON, BOTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

can be extremely demanding, and sophisticated approximations are required. More importantly for
us, neither work leads to significant word embeddings being reported.

Shannon (1951) has estimated the entropy of the English language between 0.6 and 1.3 bits per
character by asking human subjects to guess upcoming characters. Cover and King (1978) give
a lower bound of 1.25 bits per character using a subtle gambling approach. Meanwhile, using a
simple word trigram model, Brown et al. (1992b) reach 1.75 bits per character. Teahan and Cleary
(1996) obtain entropies as low as 1.46 bits per character using variable length character n-grams.
The human subjects rely of course on all their knowledge of the language and of the world. Can we
learn the grammatical structure of the English language and the nature of the world by leveraging
the 0.2 bits per character that separate human subjects from simple n-grammodels? Since such tasks
certainly require high capacity models, obtaining sufficiently small confidence intervals on the test
set entropy may require prohibitively large training sets.16 The entropy criterion lacks dynamical
range because its numerical value is largely determined by the most frequent phrases. In order to
learn syntax, rare but legal phrases are no less significant than common phrases.

It is therefore desirable to define alternative training criteria. We propose here to use a pairwise
ranking approach (Cohen et al., 1998). We seek a network that computes a higher score when
given a legal phrase than when given an incorrect phrase. Because the ranking literature often deals
with information retrieval applications, many authors define complex ranking criteria that give more
weight to the ordering of the best ranking instances (see Burges et al., 2007; Clémençon and Vayatis,
2007). However, in our case, we do not want to emphasize the most common phrase over the rare
but legal phrases. Therefore we use a simple pairwise criterion.

We consider a window approach network, as described in Section 3.3.1 and Figure 1, with
parameters θ which outputs a score fθ(x) given a window of text x = [w]dwin1 . We minimize the
ranking criterion with respect to θ:

θ !→ ∑
x∈X

∑
w∈D

max
{

0 , 1− fθ(x)+ fθ(x
(w))

}

, (17)

where X is the set of all possible text windows with dwin words coming from our training corpus, D
is the dictionary of words, and x(w) denotes the text window obtained by replacing the central word
of text window [w]dwin1 by the word w.

Okanohara and Tsujii (2007) use a related approach to avoiding the entropy criteria using a
binary classification approach (correct/incorrect phrase). Their work focuses on using a kernel
classifier, and not on learning word embeddings as we do here. Smith and Eisner (2005) also
propose a contrastive criterion which estimates the likelihood of the data conditioned to a “negative”
neighborhood. They consider various data neighborhoods, including sentences of length dwin drawn
from Ddwin . Their goal was however to perform well on some tagging task on fully unsupervised
data, rather than obtaining generic word embeddings useful for other tasks.

4.3 Training Language Models

The language model network was trained by stochastic gradient minimization of the ranking crite-
rion (17), sampling a sentence-word pair (s, w) at each iteration.

16. However, Klein and Manning (2002) describe a rare example of realistic unsupervised grammar induction using a
cross-entropy approach on binary-branching parsing trees, that is, by forcing the system to generate a hierarchical
representation.
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FRANCE JESUS XBOX REDDISH SCRATCHED MEGABITS
454 1973 6909 11724 29869 87025

AUSTRIA GOD AMIGA GREENISH NAILED OCTETS
BELGIUM SATI PLAYSTATION BLUISH SMASHED MB/S
GERMANY CHRIST MSX PINKISH PUNCHED BIT/S
ITALY SATAN IPOD PURPLISH POPPED BAUD
GREECE KALI SEGA BROWNISH CRIMPED CARATS
SWEDEN INDRA PSNUMBER GREYISH SCRAPED KBIT/S
NORWAY VISHNU HD GRAYISH SCREWED MEGAHERTZ
EUROPE ANANDA DREAMCAST WHITISH SECTIONED MEGAPIXELS
HUNGARY PARVATI GEFORCE SILVERY SLASHED GBIT/S

SWITZERLAND GRACE CAPCOM YELLOWISH RIPPED AMPERES

Table 7: Word embeddings in the word lookup table of the language model neural network LM1
trained with a dictionary of size 100,000. For each column the queried word is followed
by its index in the dictionary (higher means more rare) and its 10 nearest neighbors (using
the Euclidean metric, which was chosen arbitrarily).

and semantic properties of the neighbors are clearly related to those of the query word. These
results are far more satisfactory than those reported in Table 7 for embeddings obtained using purely
supervised training of the benchmark NLP tasks.

4.5 Semi-supervised Benchmark Results

Semi-supervised learning has been the object of much attention during the last few years (see
Chapelle et al., 2006). Previous semi-supervised approaches for NLP can be roughly categorized as
follows:

• Ad-hoc approaches such as Rosenfeld and Feldman (2007) for relation extraction.

• Self-training approaches, such as Ueffing et al. (2007) for machine translation, and McClosky
et al. (2006) for parsing. These methods augment the labeled training set with examples from
the unlabeled data set using the labels predicted by the model itself. Transductive approaches,
such as Joachims (1999) for text classification can be viewed as a refined form of self-training.

• Parameter sharing approaches such as Ando and Zhang (2005); Suzuki and Isozaki (2008).
Ando and Zhang propose a multi-task approach where they jointly train models sharing cer-
tain parameters. They train POS and NER models together with a language model (trained on
15 million words) consisting of predicting words given the surrounding tokens. Suzuki and
Isozaki embed a generative model (Hidden Markov Model) inside a CRF for POS, Chunking
and NER. The generative model is trained on one billion words. These approaches should
be seen as a linear counterpart of our work. Using multilayer models vastly expands the
parameter sharing opportunities (see Section 5).

Our approach simply consists of initializing the word lookup tables of the supervised networks
with the embeddings computed by the language models. Supervised training is then performed as
in Section 3.5. In particular the supervised training stage is free to modify the lookup tables. This
sequential approach is computationally convenient because it separates the lengthy training of the

2514
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Abstract

The recently introduced continuous Skip-gram model is an efficient method for
learning high-quality distributed vector representations that capture a large num-
ber of precise syntactic and semantic word relationships. In this paper we present
several extensions that improve both the quality of the vectors and the training
speed. By subsampling of the frequent words we obtain significant speedup and
also learn more regular word representations. We also describe a simple alterna-
tive to the hierarchical softmax called negative sampling.
An inherent limitation of word representations is their indifference to word order
and their inability to represent idiomatic phrases. For example, the meanings of
“Canada” and “Air” cannot be easily combined to obtain “Air Canada”. Motivated
by this example, we present a simple method for finding phrases in text, and show
that learning good vector representations for millions of phrases is possible.

1 Introduction

Distributed representations of words in a vector space help learning algorithms to achieve better
performance in natural language processing tasks by grouping similar words. One of the earliest use
of word representations dates back to 1986 due to Rumelhart, Hinton, and Williams [13]. This idea
has since been applied to statistical language modeling with considerable success [1]. The follow
up work includes applications to automatic speech recognition and machine translation [14, 7], and
a wide range of NLP tasks [2, 20, 15, 3, 18, 19, 9].

Recently, Mikolov et al. [8] introduced the Skip-gram model, an efficient method for learning high-
quality vector representations of words from large amounts of unstructured text data. Unlike most
of the previously used neural network architectures for learning word vectors, training of the Skip-
gram model (see Figure 1) does not involve dense matrix multiplications. This makes the training
extremely efficient: an optimized single-machine implementation can train on more than 100 billion
words in one day.

The word representations computed using neural networks are very interesting because the learned
vectors explicitly encode many linguistic regularities and patterns. Somewhat surprisingly, many of
these patterns can be represented as linear translations. For example, the result of a vector calcula-
tion vec(“Madrid”) - vec(“Spain”) + vec(“France”) is closer to vec(“Paris”) than to any other word
vector [9, 8].

1
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•  How	
  about	
  this	
  binary	
  tree?	
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ROOT	
  

the	
  

Gomez-­‐like	
  

…	
  

obtusely	
  

a	
  

Albertopolis	
  

Why	
  is	
  this	
  tree	
  bad?	
  
Give	
  two	
  reasons.	
  



•  How	
  about	
  this	
  binary	
  tree?	
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•  word2vec	
  uses	
  Huffman	
  coding	
  (common	
  words	
  
have	
  short	
  codes,	
  i.e.,	
  are	
  near	
  top	
  of	
  tree)	
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NegaTve	
  Sampling	
  
(Mikolov	
  et	
  al.,	
  2013)	
  

•  rather	
  than	
  sum	
  over	
  enTre	
  vocabulary,	
  
generate	
  samples	
  and	
  sum	
  over	
  them	
  

•  instead	
  of	
  a	
  mulTclass	
  classifier,	
  use	
  a	
  binary	
  
classifier:	
  

•  similar	
  to	
  idea	
  of	
  Collobert	
  et	
  al	
  but	
  uses	
  log	
  
loss	
  instead	
  of	
  hinge	
  loss	
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NegaTve	
  Sampling	
  
(Mikolov	
  et	
  al.,	
  2013)	
  

•  NEG	
  contains	
  2-­‐20	
  words	
  sampled	
  from	
  some	
  
distribuTon	
  
– e.g.,	
  uniform,	
  unigram,	
  or	
  smoothed	
  unigram	
  
– smoothed:	
  raise	
  probabiliTes	
  to	
  power	
  ¾,	
  
renormalize	
  to	
  get	
  a	
  distribuTon	
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AlternaTves	
  

•  Noise-­‐ContrasTve	
  EsTmaTon	
  (Gutmann	
  &	
  Hyvarinen,	
  
2010;	
  2012)	
  

•  Applied	
  to	
  language	
  modeling	
  by	
  Mnih	
  &	
  Teh	
  (2012)	
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GloVe	
  
(Pennington	
  et	
  al.,	
  2014)	
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Abstract

Recent methods for learning vector space
representations of words have succeeded
in capturing fine-grained semantic and
syntactic regularities using vector arith-
metic, but the origin of these regularities
has remained opaque. We analyze and
make explicit the model properties needed
for such regularities to emerge in word
vectors. The result is a new global log-
bilinear regression model that combines
the advantages of the two major model
families in the literature: global matrix
factorization and local context window
methods. Our model efficiently leverages
statistical information by training only on
the nonzero elements in a word-word co-
occurrence matrix, rather than on the en-
tire sparse matrix or on individual context
windows in a large corpus. The model pro-
duces a vector space with meaningful sub-
structure, as evidenced by its performance
of 75% on a recent word analogy task. It
also outperforms related models on simi-
larity tasks and named entity recognition.

1 Introduction

Semantic vector space models of language repre-
sent each word with a real-valued vector. These
vectors can be used as features in a variety of ap-
plications, such as information retrieval (Manning
et al., 2008), document classification (Sebastiani,
2002), question answering (Tellex et al., 2003),
named entity recognition (Turian et al., 2010), and
parsing (Socher et al., 2013).

Most word vector methods rely on the distance
or angle between pairs of word vectors as the pri-
mary method for evaluating the intrinsic quality
of such a set of word representations. Recently,
Mikolov et al. (2013c) introduced a new evalua-
tion scheme based on word analogies that probes

the finer structure of the word vector space by ex-
amining not the scalar distance between word vec-
tors, but rather their various dimensions of dif-
ference. For example, the analogy “king is to
queen as man is to woman” should be encoded
in the vector space by the vector equation king �
queen = man � woman. This evaluation scheme
favors models that produce dimensions of mean-
ing, thereby capturing the multi-clustering idea of
distributed representations (Bengio, 2009).

The two main model families for learning word
vectors are: 1) global matrix factorization meth-
ods, such as latent semantic analysis (LSA) (Deer-
wester et al., 1990) and 2) local context window
methods, such as the skip-gram model of Mikolov
et al. (2013c). Currently, both families suffer sig-
nificant drawbacks. While methods like LSA ef-
ficiently leverage statistical information, they do
relatively poorly on the word analogy task, indi-
cating a sub-optimal vector space structure. Meth-
ods like skip-gram may do better on the analogy
task, but they poorly utilize the statistics of the cor-
pus since they train on separate local context win-
dows instead of on global co-occurrence counts.

In this work, we analyze the model properties
necessary to produce linear directions of meaning
and argue that global log-bilinear regression mod-
els are appropriate for doing so. We propose a spe-
cific weighted least squares model that trains on
global word-word co-occurrence counts and thus
makes efficient use of statistics. The model pro-
duces a word vector space with meaningful sub-
structure, as evidenced by its state-of-the-art per-
formance of 75% accuracy on the word analogy
dataset. We also demonstrate that our methods
outperform other current methods on several word
similarity tasks, and also on a common named en-
tity recognition (NER) benchmark.

We provide the source code for the model as
well as trained word vectors at http://nlp.
stanford.edu/projects/glove/.



Other	
  Work	
  on	
  Word	
  Embeddings	
  
•  acTve	
  research	
  area	
  (probably	
  too	
  acTve)	
  
•  other	
  direcTons:	
  
– mulTple	
  embeddings	
  for	
  a	
  single	
  word	
  
corresponding	
  to	
  different	
  word	
  senses	
  

– using	
  subword	
  informaTon	
  (e.g.,	
  characters)	
  in	
  
word	
  embeddings	
  

–  tailoring	
  embeddings	
  for	
  different	
  NLP	
  tasks	
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•  Pretrained	
  word	
  embeddings	
  are	
  really	
  useful!	
  

•  What	
  about	
  embeddings	
  for	
  phrases	
  and	
  
sentences?	
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Unsupervised	
  Sentence	
  Models	
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•  How	
  are	
  sentence	
  embeddings	
  useful?	
  
– mulT-­‐document	
  summarizaTon	
  
– automaTc	
  essay	
  grading	
  
– evaluaTon	
  of	
  text	
  generaTon	
  systems	
  
– machine	
  translaTon	
  
– entailment/inference	
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Unsupervised	
  Sentence	
  Models	
  
•  how	
  should	
  we	
  evaluate	
  sentence	
  models?	
  
•  we	
  consider	
  two	
  kinds	
  of	
  evaluaTons	
  here:	
  
– sentence	
  similarity:	
  intrinsic	
  evaluaTon	
  of	
  
sentence	
  embedding	
  space,	
  no	
  addiTonal	
  learned	
  
parameters	
  

– sentence	
  classificaTon:	
  train	
  a	
  linear	
  classifier	
  
(logisTc	
  regression)	
  using	
  the	
  fixed	
  sentence	
  
representaTon	
  as	
  the	
  input	
  features	
  
•  reporTng	
  average	
  accuracies	
  over	
  6	
  tasks	
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