TTIC 31210:
Advanced Natural Language Processing

Kevin Gimpel
Spring 2017

Lecture 4.
Word Embeddings (2)

Collobert et al. (2011)

Journal of Machine Learning Research 12 (2011) 2493-2537 Submitted 1/10; Revised 11/10; Published 8/11

Natural Language Processing (Almost) from Scratch

Ronan Collobert* RONAN@ COLLOBERT.COM
Jason Weston' JWESTON @ GOOGLE.COM
Léon Bottou* LEON @BOTTOU.ORG
Michael Karlen MICHAEL .KARLEN @GMAIL.COM
Koray Kavukcuoglu® KORAY @CS.NYU.EDU
Pavel Kuksa’ PKUKSA@CS.RUTGERS.EDU

NEC Laboratories America
4 Independence Way
Princeton, NJ 08540

Input Window

word of interest

Text cat sat on the mat
Feature 1 w} w% w]lv
Feature K ’wf{ ’wf ’wjl\{;

o
Lookup Table Y
LTy AN~
= S I |d
LTy x AN~ | | B B H
—conat ¥
Linear (v
M! xO N~ | |
n%z,u .
HardTanh v

/S A~ | |

Linear

M? x@ | |

np., = #tags

Collobert et al. Pairwise Ranking Loss

min Y SO fol{wr, e m1) + fol(@1, w5, 0,7, w1y
(x1,...,x11)ET weV
T is training set of 11-word windows
*) isvocabulary
 What is going on here?

— Make actual text window have higher score than
all windows with center word replaced by w

Collobert et al. Pairwise Ranking Loss

min > S (= fol(w, 1))+ fol(w1, s w0, 27, w1
<CB :U11>€T weV
T is training set of 11-word windows
*) isvocabulary

* This still sums over entire vocabulary, so it
should be as slow as log loss...

* Why can it be faster?

— when using SGD, summation = sample

Collobert et al. (2011)

It is therefore desirable to define alternative training criteria. We propose here to use a pairwise
ranking approach (Cohen et al., 1998). We seek a network that computes a higher score when
given a legal phrase than when given an incorrect phrase.

We consider a window approach network, as described in Section 3.3.1 and Figure 1, with
parameters 6 which outputs a score f,(x) given a window of text x = [w]fw"”. We minimize the

ranking criterion with respect to 0:

63 S max{o, 1—f6(x)+fe(x<W>)}, (17)

xeXweD

where X is the set of all possible text windows with d,,;, words coming from our training corpus, D
is the dictionary of words, and x") denotes the text window obtained by replacing the central word
of text window |[w] ‘llw"” by the word w.

Collobert et al. (2011)

e 631M word tokens, 100k vocab size, 11-word
input window, 4 weeks of training

e they didn’t care about getting good
perplexities, just good word embeddings for
their downstream NLP tasks

* 50 a pairwise ranking loss makes sense in this
context

Collobert et al. (2011)

 word embedding nearest neighbors:

FRANCE JESUS XBOX REDDISH SCRATCHED MEGABITS
454 1973 6909 11724 29869 87025
AUSTRIA GOD AMIGA GREENISH NAILED OCTETS
BELGIUM SATI PLAYSTATION BLUISH SMASHED MB/S
GERMANY CHRIST MSX PINKISH PUNCHED BIT/S
ITALY SATAN IPOD PURPLISH POPPED BAUD
GREECE KALI SEGA BROWNISH CRIMPED CARATS
SWEDEN INDRA PSNUMBER GREYISH SCRAPED KBIT/S
NORWAY VISHNU HD GRAYISH SCREWED MEGAHERTZ
EUROPE ANANDA DREAMCAST WHITISH SECTIONED MEGAPIXELS
HUNGARY PARVATI GEFORCE SILVERY SLASHED GBIT/S
SWITZERLAND GRACE CAPCOM YELLOWISH RIPPED AMPERES

Table 7: Word embeddings in the word lookup table of the language model neural network LM1
trained with a dictionary of size 100,000. For each column the queried word is followed
by its index in the dictionary (higher means more rare) and its 10 nearest neighbors (using
the Euclidean metric, which was chosen arbitrarily).

word2vec (Mikolov et al., 20133)

Efficient Estimation of Word Representations in
Vector Space

Tomas Mikolov
Google Inc., Mountain View, CA

tmikolov@google.com

Greg Corrado
Google Inc., Mountain View, CA

gcorrado@google.com

Kai Chen
Google Inc., Mountain View, CA

kaichen@google.com

Jeffrey Dean
Google Inc., Mountain View, CA
jeff@google.com

word2vec (Mikolov et al., 2013b)

Distributed Representations of Words and Phrases
and their Compositionality

Tomas Mikolov Ilya Sutskever Kai Chen
Google Inc. Google Inc. Google Inc.
Mountain View Mountain View Mountain View
mikolov@google.com ilyasu@google.com kai@google.com
Greg Corrado Jeffrey Dean
Google Inc. Google Inc.
Mountain View Mountain View
gcorrado@google.com jeff@google.com

10

INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)

SUM

> w(t)

w(t+1)

w(t+2)

CBOW Mikolov et al. (201113a)

CBOW

 l|ike Collobert et al. (2011), except:
— no hidden layers

— averages vectors of context words
rather than concatenating

— objective is to classify center word,
so it’s a multiclass classifier over all
possible words (could be very slow!)

— Collobert et al were essentially just
training a binary classifier, where
negative examples are drawn
randomly from vocab

w(t-1)

w(t+1)

w(t+2)

SUM

INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)

w(t) I BE—

w(t+1)

AN

w(t+2)

Skip-gram Mikolov et al. (20133a)

skip-gram

e skip-gram objective:

min 3 Y —logPelars |)

1<t<|T| —e<j<e.j#0

/

sum over
. . sum over context
positions In : .
words in window
corpus

(size=2c+1)

14

min 3 Y —logPa(ans | o

1<t<|T| —e<j<e,j#0

skip-gram model uses two different vector spaces:

Py (u | v) < exp{e,, ¥, }

N T

“output” or “input” or
“outside” vector “inside” vector

15

min 3 Y —logPa(ans | o

1<t<|T| —e<j<e,j#0

skip-gram model uses two different vector spaces:

Py (u | v) < exp{e,, ¥, }

0 = (o,)
why?

which should we use as our word embeddings?

min Y Y —logPelars | o)

1<t<|T| —e<j<e,j#0

normalization requires sum over what?

Py (u | v) < exp{,, ¥, }

min Y Y —logPelars | o)

1<t<|T| —e<j<e,j#0

normalization requires sum over entire vocabulary:

exp{ ¢, ¥, }

Po(u | v) = D> wey EXPLPLY,}

Hierarchical Softmax
(Morin and Bengio, 2005)

 based on a new generative story for Py (u | v)
* but the generative story is so simple!

— just draw from the conditional distribution

* how can we make it more efficient?

Hierarchical Softmax
(Morin and Bengio, 2005)

based on a new generative story for Py (u | v)
but the generative story is so simple!

— just draw from the conditional distribution
how can we make it more efficient?
we still need it to be true that:

ZPg(U\U)zl

uey

Hierarchical Softmax in word2vec

new generative story for Pg(u | v)
— a random walk through the vocabulary biased by v

idea:
— build binary tree to represent vocabulary

— to generate a context word of center word v, start at
the root and keep flipping biased coins (biased
according to v) to choose left or right

— stop on reaching a leaf
parameters of this generative model are vectors

for individual split points in the tree, and input
vector of v

‘ Generative Story for Pg(u | v)

ROOT flip a coin with Pr(heads) = o (ProoT,,)
‘ ‘ if tails,
1 output “the” as u
the ‘ ‘if heads,
‘2\ red flip coin w/ Pr(heads) = 0(¢8Tpht11,bv)
if heads,

dog
output “red” as u

if tails,
flip coin w/ Pr(heads) = U(¢8Tplit2¢v)

22

Generative Story for Pg(u | v)

. L T

ROOT flip a coin with Pr(heads) = o (ProoTY,)
if tails,

1 output “the” as u
if heads,
2 P T
\ re flip coin w/ Pr(heads) = U(¢split1¢v)
if heads,
dog

output “red” as u

What is the normalization constant?

ROOT

Generative Story for Pg(u | v)

flip a coin with Pr(heads) = U(CbIT{OOT'PU)
if tails,

1 output “the” as u
if heads,

2\ red flip coin w/ Pr(heads) = U(¢8Tpht11,bv)

if heads,

output “red” as u

What is Py(dog | cat)?

Generative Story for Pg(u | v)

ROOT flip a coin with Pr(heads) = o (ProoT,)
if tails,
1 output “the” as u
the if heads,
2\ red flip coin w/ Pr(heads) = U(¢8Tpht11,bv)
if heads,
dog

output “red” as u

Can you prove that Z Po(u|v)=17?

uey

Hierarchical Softmax for Skip-Gram
(Mikolov et al., 2013)

* each word has a unique path from ROOT

* rather than learn output vectors for all words,

learn output vectors only for internal nodes of
the binary tree

* how should we arrange the words into a
binary tree?

 How about this binary tree?

ROOT

obtusely

Gomez-like

Albertopolis /\

a the

How about this binary tree?

ROOT

obtusely

Gomez-like

Albertopolis /\

a the

Why is this tree bad?
Give two reasons.

 How about this binary tree?

ROOT

the

that /\

obtusely Gomez-like

Why is this tree bad?

e word2vec uses Huffman coding (common words
have short codes, i.e., are near top of tree)

Negative Sampling
(Mikolov et al., 2013)

* rather than sum over entire vocabulary,
generate samples and sum over them

* instead of a multiclass classifier, use a binary

classifier:
mm Z Z —logo(d)xtﬂlbxt + Z log o (d’ Y,)
1<t<|T| —c<j<c,j#0 reNEG

* similar to idea of Collobert et al but uses log
loss instead of hinge loss

Negative Sampling
(Mikolov et al., 2013)
min) > —logo(e,,, ¥.,)+ Y logo(d,v,,)

1<t<|T| —c<j<c,j#0 reNEG

 NEG contains 2-20 words sampled from some
distribution

— e.g., uniform, unigram, or smoothed unigram

— smoothed: raise probabilities to power %,
renormalize to get a distribution

Alternatives

* Noise-Contrastive Estimation (Gutmann & Hyvarinen,
2010; 2012)

* Applied to language modeling by Mnih & Teh (2012)

GloVe
(Pennington et al., 2014)

GloVe: Global Vectors for Word Representation

Jeffrey Pennington, Richard Socher, Christopher D. Manning
Computer Science Department, Stanford University, Stanford, CA 94305
jpennin@stanford.edu, richard@socher.org, manning@stanford.edu

Other Work on Word Embeddings

e active research area (probably too active)
e other directions:

— multiple embeddings for a single word
corresponding to different word senses

— using subword information (e.g., characters) in
word embeddings

— tailoring embeddings for different NLP tasks

* Pretrained word embeddings are really useful!

 What about embeddings for phrases and
sentences?

Unsupervised Sentence Models

* How are sentence embeddings useful?
— multi-document summarization
— automatic essay grading
— evaluation of text generation systems
— machine translation
— entailment/inference

Unsupervised Sentence Models

* how should we evaluate sentence models?
e we consider two kinds of evaluations here:

— sentence similarity: intrinsic evaluation of
sentence embedding space, no additional learned
parameters

— sentence classification: train a linear classifier
(logistic regression) using the fixed sentence
representation as the input features

* reporting average accuracies over 6 tasks

