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Assignment	  1	  
•  Assignment	  1	  due	  tonight	  
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Roadmap	  
•  review	  of	  TTIC	  31190	  (week	  1)	  
•  deep	  learning	  for	  NLP	  (weeks	  2-‐4)	  
•  generaMve	  models	  &	  Bayesian	  inference	  (week	  5)	  
•  Bayesian	  nonparametrics	  in	  NLP	  (week	  6)	  
•  EM	  for	  unsupervised	  NLP	  (week	  7)	  
•  syntax/semanMcs	  and	  structure	  predicMon	  (weeks	  8-‐9)	  
•  applicaMons	  (week	  10)	  
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Neural	  Similarity	  Modeling	  
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•  “Siamese	  networks”	  (Bromley	  et	  al.,	  1993)	  
–  two	  idenMcal	  networks	  with	  shared	  parameters	  
–  at	  end,	  similarity	  computed	  between	  two	  representaMons	  



Similarity	  FuncMons	  
•  many	  choices	  for	  similarity	  funcMons	  
•  we	  talked	  about	  some	  during	  Lecture	  2	  
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Learning	  for	  Similarity	  
•  We	  want	  to	  learn	  input	  representaMon	  
funcMon	  	  	  	  	  	  	  as	  well	  as	  any	  parameters	  of	  
similarity	  funcMon	  

•  We’ll	  just	  write	  all	  these	  parameters	  as	  	  
•  How	  about	  this	  loss?	  (loss	  A	  on	  your	  handout)	  

•  Any	  potenMal	  problems	  with	  this?	  
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(Beber)	  Learning	  for	  Similarity	  
•  ContrasMve	  hinge	  loss	  (loss	  B	  on	  handout):	  

•  	  	  	  	  is	  a	  “negaMve”	  example	  
•  Any	  potenMal	  problems	  with	  this?	  	  
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(Beber)	  Learning	  for	  Similarity	  
•  Large-‐margin	  contrasMve	  hinge	  loss:	  

•  	  	  	  	  	  is	  the	  “margin”	  
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(Beber)	  Learning	  for	  Similarity	  
•  Large-‐margin	  contrasMve	  hinge	  loss:	  

	  
•  How	  should	  we	  choose	  negaMve	  examples?	  
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(Beber)	  Learning	  for	  Similarity	  
•  Large-‐margin	  contrasMve	  hinge	  loss:	  

	  
•  How	  should	  we	  choose	  negaMve	  examples?	  
–  random:	  just	  pick	  v	  randomly	  from	  the	  data	  
– max:	  

– many	  other	  ways	  depending	  on	  problem	  
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Aside:	  
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Recurrent	  Neural	  Networks	  
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“hidden	  vector”	  



Recurrent	  Neural	  Networks	  
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MulMplicaMve	  IntegraMon	  	  
Recurrent	  Neural	  Networks	  
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RNN	   MI-‐RNN	  
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Turian	  et	  al.	  (2010)	  

Word	  Embeddings	  
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Abstract
A goal of statistical language modeling is to learn the joint probability function of sequences of
words in a language. This is intrinsically difficult because of the curse of dimensionality: a word
sequence on which the model will be tested is likely to be different from all the word sequences seen
during training. Traditional but very successful approaches based on n-grams obtain generalization
by concatenating very short overlapping sequences seen in the training set. We propose to fight the
curse of dimensionality by learning a distributed representation for words which allows each
training sentence to inform the model about an exponential number of semantically neighboring
sentences. The model learns simultaneously (1) a distributed representation for each word along
with (2) the probability function for word sequences, expressed in terms of these representations.
Generalization is obtained because a sequence of words that has never been seen before gets high
probability if it is made of words that are similar (in the sense of having a nearby representation) to
words forming an already seen sentence. Training such large models (with millions of parameters)
within a reasonable time is itself a significant challenge. We report on experiments using neural
networks for the probability function, showing on two text corpora that the proposed approach
significantly improves on state-of-the-art n-gram models, and that the proposed approach allows to
take advantage of longer contexts.
Keywords: Statistical language modeling, artificial neural networks, distributed representation,
curse of dimensionality

1. Introduction

A fundamental problem that makes language modeling and other learning problems difficult is the
curse of dimensionality. It is particularly obvious in the case when one wants to model the joint
distribution between many discrete random variables (such as words in a sentence, or discrete at-
tributes in a data-mining task). For example, if one wants to model the joint distribution of 10
consecutive words in a natural language with a vocabulary V of size 100,000, there are potentially
10000010 � 1 = 1050� 1 free parameters. When modeling continuous variables, we obtain gen-
eralization more easily (e.g. with smooth classes of functions like multi-layer neural networks or
Gaussian mixture models) because the function to be learned can be expected to have some lo-
cal smoothness properties. For discrete spaces, the generalization structure is not as obvious: any
change of these discrete variables may have a drastic impact on the value of the function to be esti-

c�2003 Yoshua Bengio, Réjean Ducharme, Pascal Vincent, Christian Jauvin.

•  idea:	  use	  a	  neural	  network	  for	  n-‐gram	  
language	  modeling:	  
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distribution between many discrete random variables (such as words in a sentence, or discrete at-
tributes in a data-mining task). For example, if one wants to model the joint distribution of 10
consecutive words in a natural language with a vocabulary V of size 100,000, there are potentially
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Gaussian mixture models) because the function to be learned can be expected to have some lo-
cal smoothness properties. For discrete spaces, the generalization structure is not as obvious: any
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c�2003 Yoshua Bengio, Réjean Ducharme, Pascal Vincent, Christian Jauvin.

•  this	  is	  not	  the	  earliest	  paper	  on	  using	  neural	  
networks	  for	  n-‐gram	  language	  models,	  but	  it’s	  
the	  most	  well-‐known	  and	  first	  to	  scale	  up	  

•  see	  paper	  for	  citaMons	  of	  earlier	  work	  



Neural	  ProbabilisMc	  Language	  Models	  
(Bengio	  et	  al.,	  2003)	  
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A NEURAL PROBABILISTIC LANGUAGE MODEL

will focus on in this paper. First, it is not taking into account contexts farther than 1 or 2 words,1
second it is not taking into account the “similarity” between words. For example, having seen the
sentence “The cat is walking in the bedroom” in the training corpus should help us gener-
alize to make the sentence “A dog was running in a room” almost as likely, simply because
“dog” and “cat” (resp. “the” and “a”, “room” and “bedroom”, etc...) have similar semantic and
grammatical roles.

There are many approaches that have been proposed to address these two issues, and we will
briefly explain in Section 1.2 the relations between the approach proposed here and some of these
earlier approaches. We will first discuss what is the basic idea of the proposed approach. A more
formal presentation will follow in Section 2, using an implementation of these ideas that relies
on shared-parameter multi-layer neural networks. Another contribution of this paper concerns the
challenge of training such very large neural networks (with millions of parameters) for very large
data sets (with millions or tens of millions of examples). Finally, an important contribution of
this paper is to show that training such large-scale model is expensive but feasible, scales to large
contexts, and yields good comparative results (Section 4).

Many operations in this paper are in matrix notation, with lower case v denoting a column vector
and v0 its transpose, Aj the j-th row of a matrix A, and x.y= x0y.

1.1 Fighting the Curse of Dimensionality with Distributed Representations

In a nutshell, the idea of the proposed approach can be summarized as follows:

1. associate with each word in the vocabulary a distributed word feature vector (a real-
valued vector in Rm),

2. express the joint probability function of word sequences in terms of the feature vectors
of these words in the sequence, and

3. learn simultaneously the word feature vectors and the parameters of that probability
function.

The feature vector represents different aspects of the word: each word is associated with a point
in a vector space. The number of features (e.g. m =30, 60 or 100 in the experiments) is much
smaller than the size of the vocabulary (e.g. 17,000). The probability function is expressed as a
product of conditional probabilities of the next word given the previous ones, (e.g. using a multi-
layer neural network to predict the next word given the previous ones, in the experiments). This
function has parameters that can be iteratively tuned in order to maximize the log-likelihood of
the training data or a regularized criterion, e.g. by adding a weight decay penalty.2 The feature
vectors associated with each word are learned, but they could be initialized using prior knowledge
of semantic features.

Why does it work? In the previous example, if we knew that dog and cat played simi-
lar roles (semantically and syntactically), and similarly for (the,a), (bedroom,room), (is,was),

1. n-grams with n up to 5 (i.e. 4 words of context) have been reported, though, but due to data scarcity, most predictions
are made with a much shorter context.

2. Like in ridge regression, the squared norm of the parameters is penalized.
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Figure 1: Neural architecture: f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1)) where g is the
neural network andC(i) is the i-th word feature vector.

parameters of the mapping C are simply the feature vectors themselves, represented by a |V |⇥m
matrixC whose row i is the feature vectorC(i) for word i. The function g may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters ω. The
overall parameter set is θ= (C,ω).

Training is achieved by looking for θ that maximizes the training corpus penalized log-likelihood:

L=
1
T ∑t

log f (wt ,wt�1, · · · ,wt�n+1;θ)+R(θ),

where R(θ) is a regularization term. For example, in our experiments, R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parameters only scales linearly with V , the number of
words in the vocabulary. It also only scales linearly with the order n : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layer C, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with a softmax output layer, which guarantees
positive probabilities summing to 1:

P̂(wt |wt�1, · · ·wt�n+1) =
eywt
∑i eyi

.

3. The biases are the additive parameters of the neural network, such as b and d in equation 1 below.
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Bengio	  et	  al.	  (2003)	  
•  Experiments:	  
–  they	  minimized	  log	  loss	  of	  next	  word	  condiMoned	  
on	  a	  fixed	  number	  of	  previous	  words	  

– no	  RNNs	  here.	  just	  a	  feed-‐forward	  network.	  
– ~800k	  training	  tokens,	  vocab	  size	  of	  17k	  
–  they	  trained	  for	  5	  epochs,	  which	  took	  3	  weeks	  on	  
40	  CPUs!	  
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A NEURAL PROBABILISTIC LANGUAGE MODEL

n c h m direct mix train. valid. test.
MLP1 5 50 60 yes no 182 284 268
MLP2 5 50 60 yes yes 275 257
MLP3 5 0 60 yes no 201 327 310
MLP4 5 0 60 yes yes 286 272
MLP5 5 50 30 yes no 209 296 279
MLP6 5 50 30 yes yes 273 259
MLP7 3 50 30 yes no 210 309 293
MLP8 3 50 30 yes yes 284 270
MLP9 5 100 30 no no 175 280 276
MLP10 5 100 30 no yes 265 252
Del. Int. 3 31 352 336
Kneser-Ney back-off 3 334 323
Kneser-Ney back-off 4 332 321
Kneser-Ney back-off 5 332 321
class-based back-off 3 150 348 334
class-based back-off 3 200 354 340
class-based back-off 3 500 326 312
class-based back-off 3 1000 335 319
class-based back-off 3 2000 343 326
class-based back-off 4 500 327 312
class-based back-off 5 500 327 312

Table 1: Comparative results on the Brown corpus. The deleted interpolation trigram has a test per-
plexity that is 33% above that of the neural network with the lowest validation perplexity.
The difference is 24% in the case of the best n-gram (a class-based model with 500 word
classes). n : order of the model. c : number of word classes in class-based n-grams. h :
number of hidden units. m : number of word features for MLPs, number of classes for
class-based n-grams. direct: whether there are direct connections from word features to
outputs. mix: whether the output probabilities of the neural network are mixed with the
output of the trigram (with a weight of 0.5 on each). The last three columns give perplexity
on the training, validation and test sets.

probabilities. On the other hand, without those connections the hidden units form a tight bottleneck
which might force better generalization.

Table 2 gives similar results on the larger corpus (AP News), albeit with a smaller difference
in perplexity (8%). Only 5 epochs were performed (in approximately three weeks with 40 CPUs).
The class-based model did not appear to help the n-gram models in this case, but the high-order
modified Kneser-Ney back-off model gave the best results among the n-gram models.

5. Extensions and Future Work

In this section, we describe extensions to the model described above, and directions for future work.
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•  ObservaMons:	  
–  hidden	  layer	  (h	  >	  0)	  helps	  
–  interpolaMng	  with	  n-‐gram	  model	  (“mix”)	  helps	  
–  using	  higher	  word	  embedding	  dimensionality	  helps	  
–  5-‐gram	  model	  beber	  than	  trigram	  
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Bengio	  et	  al.	  (2003)	  
•  they	  discuss	  how	  the	  word	  embedding	  space	  
might	  be	  interesMng	  to	  examine	  but	  they	  
don’t	  do	  this	  

•  they	  suggest	  that	  a	  good	  way	  to	  visualize/
interpret	  word	  embeddings	  would	  be	  to	  use	  2	  
dimensions	  J	  

•  they	  discussed	  handling	  polysemous	  words,	  
unknown	  words,	  inference	  speed-‐ups,	  etc.	  
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Abstract
We propose a unified neural network architecture and learning algorithm that can be applied to var-
ious natural language processing tasks including part-of-speech tagging, chunking, named entity
recognition, and semantic role labeling. This versatility is achieved by trying to avoid task-specific
engineering and therefore disregarding a lot of prior knowledge. Instead of exploiting man-made
input features carefully optimized for each task, our system learns internal representations on the
basis of vast amounts of mostly unlabeled training data. This work is then used as a basis for
building a freely available tagging system with good performance and minimal computational re-
quirements.
Keywords: natural language processing, neural networks

1. Introduction

Will a computer program ever be able to convert a piece of English text into a programmer friendly
data structure that describes the meaning of the natural language text? Unfortunately, no consensus
has emerged about the form or the existence of such a data structure. Until such fundamental
Articial Intelligence problems are resolved, computer scientists must settle for the reduced objective
of extracting simpler representations that describe limited aspects of the textual information.

These simpler representations are often motivated by specific applications (for instance, bag-
of-words variants for information retrieval), or by our belief that they capture something more gen-
eral about natural language. They can describe syntactic information (e.g., part-of-speech tagging,
chunking, and parsing) or semantic information (e.g., word-sense disambiguation, semantic role
labeling, named entity extraction, and anaphora resolution). Text corpora have been manually an-
notated with such data structures in order to compare the performance of various systems. The
availability of standard benchmarks has stimulated research in Natural Language Processing (NLP)
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NATURAL LANGUAGE PROCESSING (ALMOST) FROM SCRATCH
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Figure 1: Window approach network.

complex features (e.g., extracted from a parse tree) which can impact the computational cost which
might be important for large-scale applications or applications requiring real-time response.

Instead, we advocate a radically different approach: as input we will try to pre-process our
features as little as possible and then use a multilayer neural network (NN) architecture, trained in
an end-to-end fashion. The architecture takes the input sentence and learns several layers of feature
extraction that process the inputs. The features computed by the deep layers of the network are
automatically trained by backpropagation to be relevant to the task. We describe in this section a
general multilayer architecture suitable for all our NLP tasks, which is generalizable to other NLP
tasks as well.

Our architecture is summarized in Figure 1 and Figure 2. The first layer extracts features for
each word. The second layer extracts features from a window of words or from the whole sentence,
treating it as a sequence with local and global structure (i.e., it is not treated like a bag of words).
The following layers are standard NN layers.

3.1 Notations

We consider a neural network fθ(·), with parameters θ. Any feed-forward neural network with L
layers, can be seen as a composition of functions f lθ(·), corresponding to each layer l:

fθ(·) = f Lθ ( f L−1θ (. . . f 1θ (·) . . .)) .
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•  	  	  	  	  	  	  is	  training	  set	  of	  11-‐word	  windows	  
•  	  	  	  	  	  	  is	  vocabulary	  
•  What	  is	  going	  on	  here?	  (loss	  C	  on	  handout)	  
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•  	  	  	  	  	  	  is	  training	  set	  of	  11-‐word	  windows	  
•  	  	  	  	  	  	  is	  vocabulary	  
•  What	  is	  going	  on	  here?	  
– Make	  actual	  text	  window	  have	  higher	  score	  than	  
all	  windows	  with	  center	  word	  replaced	  by	  w	  
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•  	  	  	  	  	  	  is	  training	  set	  of	  11-‐word	  windows	  
•  	  	  	  	  	  	  is	  vocabulary	  
•  This	  sMll	  sums	  over	  enMre	  vocabulary,	  so	  it	  
should	  be	  as	  slow	  as	  log	  loss…	  

•  Why	  can	  it	  be	  faster?	  
– when	  using	  SGD,	  summaMon	  à	  sample	  


