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• Please	email	me	with	the	following:
– name
– email	address
– whether	you	are	taking	the	course	for	credit

• I	will	use	the	email	addresses	for	the	course	
mailing	list
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Assignment	1
• Assignment	1	has	been	posted;	due	in	one	
week
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Roadmap
• review	of	TTIC	31190	(week	1)
• deep	learning	for	NLP	(weeks	2-4)
• generative	models	&	Bayesian	inference	(week	5)
• Bayesian	nonparametrics in	NLP	(week	6)
• EM	for	unsupervised	NLP	(week	7)
• syntax/semantics	and	structure	prediction	(weeks	8-9)
• applications	(week	10)
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What	is	a	classifier?
• a	function	from	inputs	x to	classification	labels	y
• one	simple	type	of	classifier:
– for	any	input	x,	assign	a	score	to	each	label	y,	
parameterized	by	vector	 :

– classify	by	choosing	highest-scoring	label:
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Modeling,	Inference,	Learning

learning:	choose	_

modeling:	define		score	functioninference:	solve														_
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Notation
• We’ll	use	boldface	for	vectors:

• Individual	entries	will	use	subscripts	and	no	boldface,	e.g.,	for	
entry	i:
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What	is	a	neural	network?
• just	think	of	a	neural	network	as	a	function
• it	has	inputs	and	outputs
• the	term	“neural”	typically	means	a	particular	
type	of	functional	building	block	(“neural	
layers”),	but	the	term	has	expanded	to	mean	
many	things

• neural	modeling	is	now	better	thought	of	as	a	
modeling	strategy	(leveraging	“distributed	
representations”	or	“representation	
learning”),	or	a	family	of	related	methods	
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Classifier	Framework

• linear	model	score	function:

• we	can	also	use	a	neural	network	for	the	score	
function!
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neural	layer	=	affine	transform	+	nonlinearity

• this	is	a	single	“layer”	of	a	neural	network
• input	vector	is	
• vector	of	“hidden	units”	is	

10

affine	transform
nonlinearity



Nonlinearities

• most	common:	elementwise application	of	g
function	to	each	entry	in	vector

• examples…
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tanh:



13

(logistic)	sigmoid:
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rectified	linear	unit	(ReLU):



2-layer	network

• this	is	a	2-layer	neural	network
• input	vector	is	
• output	vector	is
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2-layer	neural	network	for	sentiment	classification
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Use	softmax function	to	convert	scores	into	probabilities
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Why	nonlinearities?
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• if	g	is	linear,	then	we	can	rewrite	the	above	as	
a	single	affine	transform

• can	you	prove	this?	(use	distributivity of	
matrix	multiplication)

2-layer	network:

written	in	a	single	equation:



Understanding	the	score	function
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row	vector	corresponding	to	row	2	of	

entry	2	of	bias	vector



Parameter	sharing
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parameters	
shared	between	

labels

parameters	NOT	
shared	between	labels



Word	Embeddings
• “Basic	unit”	of	neural	NLP

• We’ll	talk	about	ways	to	learn	word	
embeddings next	week

• Today:	we’ll	assume	we	have	word	
embeddings as	a	black	box
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Turian et	al. (2010)

Word	Embeddings



Two	Ways	to	Represent	Word	Embeddings

• =	vocabulary	,	 =	size	of	vocab
• 1:	create	 -dimensional	“one-hot”	vector	for	
each	word,	multiply	by	word	embedding	matrix:

• 2:	store	embeddings in	a	hash/dictionary	data	
structure,	do	lookup	to	find	embedding	for	word:

• These	are	equivalent,	second	can	be	much	faster	
(though	first	can	be	fast	if	using	sparse	
operations)
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Encoders
• encoder:	a	function	to	represent	a	word	
sequence	as	a	vector

• simplest:	average	word	embeddings:

• many	other	functions	possible!
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Attention
• attention	is	a	useful	generic	tool
• often	used	to	replace	a	sum	with	an	attention-
weighted	sum

• e.g.,	for	a	word	summing	encoder:

• many	other	functions	possible!
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Ling	et	al.	(EMNLP	2015)
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where all parameters K and s are fixed at zero.
Computing the attention of all words in the input
requires 2b operations, as it simply requires re-
trieving one value from the lookup matrix K for
each word and one value from the bias s for each
word in the window. Considering that these mod-
els must be trainable on billions of tokens, effi-
ciency is paramount. Although more sophisticated
attentional models are certainly imaginable (Bah-
danau et al., 2014), ours is a good balance of com-
putational efficiency and modeling expressivity.

2.3 Parameter Learning

Gradients of the loss function with respect to
the parameters (W,O,K, s) are computed with
backpropagation, and parameters are updated after
each training instance using a fixed learning rate.

3 Experiments

3.1 Word Vectors

We used a subsample from an English Wikipedia
dump1 containing 10 million documents, contain-
ing a total of 530 million tokens. We built word
embeddings using the original CBOW and our
proposed attentional model on this dataset.

In both cases, word vectors were constructed us-
ing window size b = 20, which enables us to cap-
ture longer-range dependencies between words.
We set the embedding size dw = 50 and used a
negative sampling rate of 10. Finally, the vocabu-
lary was reduced to words with more than 40 oc-
currences. In terms of computational speed, the
original bag-of-words implementation was able to
compute approximately 220k words per second,
while our model computes approximately 100k
words per second. The slowdown is tied to the
fact that we are computing the gradients, the atten-
tion model parameters, as well as the word embed-
dings. On the other hand, the skip-n-gram model
process words at only 10k words per second, as it
must predict every word in the window b.

Figure 1 illustrates the attention model for the
prediction of the word south in the sentence an-
tartica has little rainfall with the south pole mak-
ing it a continental desert. Darker cell indicate
higher attention values from a(i, w). We can ob-
serve that function words (has, the and a) tend to
be attributed very low attentions, as these are gen-
erally less predictive power. On the other hand,

1Collected in September of 2014

antartica has little rainfall with the

south

pole making it a continental desert

Figure 1: Illustration of the inferred attention pa-
rameters for a sentence from our training data
when predicting the word south; darker cells in-
dicate higher weights.

content words, such as antartica, rainfall, conti-
nental and desert are attributed higher weights as
these words provide hints that the predicted word
is likely to be related to these words. Finally, the
word pole is assigned the highest attention as it
close to the predicted word, and there is a very
likely chance that south will precede pole.

3.2 Syntax Evaluation

For syntax, we evaluate our embeddings in the
domain of part-of-speech tagging in both su-
pervised (Ling et al., 2015b) and unsupervised
tasks (Lin et al., 2015). This later task is newly
proposed, but we argue that success in it is a com-
pelling demonstration of separation of words into
syntactically coherent clusters.

Part-of-speech induction. The work in (Lin et
al., 2015) attempts to infer POS tags with a
standard bigram hmm, which uses word embed-
dings to infer POS tags without supervision. We
use the same dataset, obtained from the ConLL
2007 shared task (Nivre et al., 2007) Scoring is
performed using the V-measure (Rosenberg and
Hirschberg, 2007), which is used to predict syn-
tactic classes at the word level. It has been shown
in (Lin et al., 2015) that word embeddings learnt
from structured skip-ngrams tend to work better
at this task, mainly because it is less sensitive to
larger window sizes. These results are consistent
with our observations found in Table 1, in rows
“Skip-ngram” and “SSkip-ngram”. We can ob-
serve that our attention based CBOW model (row
“CBOW Attention”) improves over these results
for both tasks and also the original CBOW model
(row “CBOW”).

• Not	All	Contexts	Are	Created	Equal:	Better	
Word	Representations	with	Variable	Attention



Recurrent	Neural	Networks
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“hidden	vector”



Neural	Similarity	Learning
• A	common	need:	
compute	similarity/affinity	of	two	things
– maybe	two	things	of	the	same	type,
– two	things	with	different	types	being	mapped	to	
same	space,	or

– two	things	with	different	types	being	mapped	to	
different	spaces,	but	being	compared	with	a	
learned	similarity	function

• Examples?
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Synonym	Pairs
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contamination pollution

converged convergence

captioned subtitled

outwit thwart

bad	 villain

broad general

permanent permanently

bed sack

carefree reckless

absolutely urgently

… …

• Faruqui et	al.	(NAACL	2014),	Wieting et	al.	(TACL	2014),	inter	alia



Translation	Pairs
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dog hund

man mann

woman frau

city stadt

person man

the der

the die

the das

… …

• Haghighi et	al.	(ACL	2008),	Mikolov et	al.	(2013),	Faruqui and	Dyer	(EACL	
2014)



Sentence	Pairs
this	was	also	true	for	pompeii ,	where	the	temple	of	jupiter that	
was	already	there	was	enlarged	and	made	more	roman	when	
the	romans	took	over	.

this	held	true	for	pompeii ,	where	the	previously	existing	temple	
of	jupiter was	enlarged	and	romanized upon	conquest	.
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Captions	and	Images
• Richard	Socher,	Andrej	Karpathy,	Quoc V.	Le,	Christopher	D.	Manning,	

Andrew	Y.	Ng.	“Grounded	Compositional	Semantics	For	Finding	And	
Describing	Images	With	Sentences,”	TACL	2014.
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Questions	and	Answers
• Mohit Iyyer,	Jordan	Boyd-Graber,	Leonardo	Claudino,	Richard	Socher,	and	

Hal	Daumé III.	“A	Neural	Network	for	Factoid	Question	Answering	over	
Paragraphs,”	EMNLP	2014

• Antoine	Bordes,	Sumit Chopra,	and	Jason	Weston.	“Question	Answering	
with	Subgraph Embeddings,”	EMNLP 2014.
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Commonsense	Knowledge	Tuples
• Xiang	Li,	Aynaz Taheri,	Lifu Tu,	Kevin	Gimpel.	“Commonsense	Knowledge	

Base	Completion,”	ACL 2016.
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<“cake”,	UsedFor,	“satisfy	hunger”>



Stories	and	Endings
• story:
– Jennifer	has	a	big	exam	tomorrow.	She	got	so	
stressed,	she	pulled	an	all-nighter.	She	went	into	
class	the	next	day,	weary	as	can	be.	Her	teacher	
stated	that	the	test	is	postponed	for	next	week.

• ending:
– Jennifer	felt	bittersweet	about	it.

• from	ROC	Story	Corpus	(Mostafazadeh et	al.,	
2016)
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• Other	examples/applications	you	can	think	of?

• Sometimes	direction	matters,	sometimes	not
• Sometimes	there	is	a	particular	kind	of	
relation	being	named	for	each	pair,	sometimes	
not	(i.e.,	just	one	kind)
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Neural	Similarity	Modeling
• “Siamese	networks”	(Bromley	et	al.,	1993)
– these	typically	share	parameters,	hence	the	name
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Similarity	Modeling
• Siamese	networks	typically	share	parameters	
across	the	two	networks

• but	it’s	also	common	to	not	share	parameters	
when	the	items	have	different	types,	but	we	
still	want	to	relate	them	in	some	way	
– whether	map	to	same	space	+	compute	sim	or	
map	each	to	some	other	space	+	compute	sim
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Similarity	Functions
• many	choices	for	similarity	functions
• we’ll	go	over	some	in	the	next	few	slides
• throughout,	keep	in	mind:
– output	range
– symmetric?
– introduces	new	parameters?
– connections	among	similarity	functions?
– notes/tips	on	using	these
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Dot	Product

43

symmetric
range?
symmetric	or	asymmetric?
introduces	parameters?	 no



Cosine	Similarity
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symmetric
range?
symmetric	or	asymmetric?
introduces	parameters?	
generalizes	anything?

no
dot	product	when	vectors	
have	norm	1



Bilinear	Function
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asymmetric	in	general
range?
symmetric	or	asymmetric?
introduces	parameters?
generalizes	anything?	

yes
dot	product	if							is	identity



Notes	on	Using	Bilinear	Functions
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similarity	can	depend	on	relation	by	using	different	
bilinear	weight	matrices	for	different	relations:

often							is	initialized	to	the	identity	matrix	(and	
regularized	back	to	it)	

potential	issue:							might	be	very	huge



L1/L2	Distances
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symmetric
range?
symmetric	or	asymmetric?
introduce	parameters? no



Deep	Neural	Network

concatenate	vectors,	pass	to	DNN,	use	scalar	for	final	output:
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…

…



Deep	Neural	Network
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…

…

asymmetric
range?
symmetric?
introduces	parameters?
generalizes	anything?	

yes
yes,	can	represent	any	function!

depends	on	nonlinearity



Notes	on	DNN	Similarity	Functions
since	DNNs	are	so	powerful,	things	could	go	horribly	wrong.
in	practice,	often	pass	additional	quantities:
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…

…



Deep	Neural	Network
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…

…

(“cake”) (“satisfy	hunger”)(“UsedFor”)

similarity	can	depend	on	relation:



Learning	for	Similarity
• We	want	to	learn	input	representations	as	
well	as	all	parameters	of	

• We’ll	just	write	all	these	parameters	as	
• How	about	this?

• Any	potential	problems	with	this?
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(Better)	Learning	for	Similarity
• Contrastive	hinge	loss:

• is	a	“negative”	example
• Any	potential	problems	with	this?	
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Learning	with	Neural	Networks

• we	can	use	any	of	our	loss	functions	from	before,	
as	long	as	we	can	compute	(sub)gradients

• algorithm	for	doing	this	efficiently:	
backpropagation

• it’s	basically	just	the	chain	rule	of	derivatives
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Computation	Graphs
• a	useful	way	to	represent	the	computations	
performed	by	a	neural	model	(or	any	model!)

• why	useful?	makes	it	easy	to	implement	
automatic	differentiation	(backpropagation)

• many	neural	net	toolkits	let	you	define	your	
model	in	terms	of	computation	graphs	
(Theano,	(Py)Torch,	TensorFlow,	CNTK,	DyNet,	
PENNE,	etc.)
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Backpropagation
• backpropagation has	become	associated	with	
neural	networks,	but	it’s	much	more	general

• I	also	use	backpropagation to	compute	
gradients	in	linearmodels	for	structured	
prediction
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A	simple	computation	graph:

• represents	expression	“a	+	3”
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A	slightly	bigger	computation	graph:

• represents	expression	“(a	+	3)2 +	4a2”
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Operators	can	have	more	than	2	operands:

• still	represents	expression	“(a	+	3)2 +	4a2”
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• more	concise:

60



Overfitting &	Regularization
• when	we	can	fit	any	function,	overfitting
becomes	a	big	concern

• overfitting:	learning	a	model	that	does	well	on	
the	training	set	but	doesn’t	generalize	to	new	
data

• there	are	many	strategies	to	reduce	overfitting
(we’ll	use	the	general	term	regularization for	
any	such	strategy)	

• you	used	early	stopping	in	Assignment	1,	
which	is	one	kind	of	regularization
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Regularization	Terms

• most	common:	penalize	large	parameter	values
• intuition:	large	parameters	might	be	instances	of	
overfitting

• examples:
L2 regularization:
(also	called	Tikhonov regularization	
or	ridge	regression)

L1 regularization:
(also	called	basis	pursuit	or	LASSO)
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Regularization	Terms

L2 regularization:

differentiable,	widely-used

L1 regularization:

not	differentiable	(but	is	subdifferentiable)
leads	to	sparse	solutions	(many	parameters	become	zero!)
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Dropout
• popular	regularization	method	for	neural	
networks

• randomly	“drop	out”	(set	to	zero)	some	of	the	
vector	entries	in	the	layers
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Optimization	Algorithms
• many	choices:
– SGD
– AdaGrad
– AdaDelta
– RMSProp
– Adam
– SGD	with	momentum

• we	don’t	have	time	to	go	through	these	in	class,	
but	you	should	try	using	them!	(most	toolkits	
have	implementations	of	these	and	others)
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2-transformation	(1-layer)	network

• we’ll	call	this	a	“2-transformation”	neural	
network,	or	a	“1-layer”	neural	network

• input	vector	is	
• score	vector	is
• one	hidden	vector											(“hidden	layer”)
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vector	of	label	scores



1-layer	neural	network	for	sentiment	classification
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ikr smh he		asked		fir		yo last		name		so		he		can

68

intj pronoun																						prep																	adj prep																verb	
other																					verb																					det noun															pronoun	

Neural	Networks	for	Twitter	Part-of-Speech	Tagging

vector	for	lastvector	for	yo

• let’s	use	the	center	word	+	two	words	to	the	right:

vector	for	name

• if	name is	to	the	right	of	yo,	then	yo is	probably	a	form	of	your
• but	our	x above	uses	separate	dimensions	for	each	position!

– i.e.,	name	is	two	words	to	the	right
– what	if	name	is	one	word	to	the	right?		



Convolution
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vector	for	lastvector	for	yo vector	for	name

=	“feature	map”,	has	an	entry	for	each	word	position	in	context	window	/	sentence



Pooling
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vector	for	lastvector	for	yo vector	for	name

=	“feature	map”,	has	an	entry	for	each	word	position	in	context	window	/	sentence

how	do	we	convert	this	into	a	fixed-length	vector?
use	pooling:

max-pooling:	returns	maximum	value	in	
average pooling:	returns	average	of	values	in	



Pooling
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vector	for	lastvector	for	yo vector	for	name

=	“feature	map”,	has	an	entry	for	each	word	position	in	context	window	/	sentence

how	do	we	convert	this	into	a	fixed-length	vector?
use	pooling:

max-pooling:	returns	maximum	value	in	
average pooling:	returns	average	of	values	in	

then,	this	single	filter							produces	a	single	feature	
value	(the	output	of	some	kind	of	pooling).
in	practice,	we	use	many	filters	of	many	different	
lengths	(e.g.,	n-grams	rather	than	words).	



Convolutional	Neural	Networks
• convolutional	neural	networks	(convnets or	CNNs)	use	
filters	that	are	“convolved	with”	(matched	against	all	
positions	of)	the	input

• think	of	convolution	as	“perform	the	same	operation	
everywhere	on	the	input	in	some	systematic	order”

• “convolutional	layer”	=	set	of	filters	that	are	convolved	
with	the	input	vector	(whether	x or	hidden	vector)

• could	be	followed	by	more	convolutional	layers,	or	by	a	
type	of	pooling

• often	used	in	NLP	to	convert	a	sentence	into	a	feature	
vector
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Recurrent	Neural	Networks
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“hidden	vector”



Long	Short-Term	Memory	(LSTM)	Recurrent	Neural	Networks
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Backward	&	Bidirectional	LSTMs

75

bidirectional:	
if	shallow,	just	use	forward	and	backward	LSTMs	in	parallel,	concatenate	
final	two	hidden	vectors,	feed	to	softmax



Deep	LSTM
(2-layer)
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layer	1

layer	2



Recursive	Neural	Networks	for	NLP
• first,	run	a	constituent	parser	on	the	sentence
• convert	the	constituent	tree	to	a	binary	tree	
(each	rewrite	has	exactly	two	children)

• construct	vector	for	sentence	recursively	at	each	
rewrite	(“split	point”):	
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Cost	Functions
• cost	function:	scores	output	against	a	gold	standard

• should	reflect	the	evaluation	metric	for	your	task

• usual	conventions:
• for	classification,	what	cost	should	we	use?
• for	classification,	what	cost	should	we	use?
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