TTIC 31210:
Advanced Natural Language Processing

Kevin Gimpel
Spring 2017

Lecture 2:
Elements of Neural NLP

* Please email me with the following:
— name
— email address
— whether you are taking the course for credit

e | will use the email addresses for the course
mailing list

Assignment 1

* Assignment 1 has been posted; due in one
week

Roadmap

review of TTIC 31190 (week 1)

deep learning for NLP (weeks 2-4)

generative models & Bayesian inference (week 5)
Bayesian nonparametrics in NLP (week 6)

EM for unsupervised NLP (week 7)

syntax/semantics and structure prediction (weeks 8-9)
applications (week 10)

What is a classifier?

* a function from inputs x to classification labels y
* one simple type of classifier:

— for any input x, assign a score to each label y,
parameterized by vector 6:

score(z,y,)
— classify by choosing highest-scoring label:

classify(x,0) = argmax score(z,y, 0)
Y

Modeling, Inference, Learning

inference: solve argmax | modeling: define score function

N

classify(x, 0) = argmax score(z,y, 0)
y /

learning: choose @

Notation

« We’ll use boldface for vectors:

0

* Individual entries will use subscripts and no boldface, e.g., for
entry i:

0;

What is a neural network?

just think of a neural network as a function
it has inputs and outputs

the term “neural” typically means a particular
type of functional building block (“neural
layers”), but the term has expanded to mean
many things

neural modeling is now better thought of as a
modeling strategy (leveraging “distributed
representations” or “representation
learning”), or a family of related methods

Classifier Framework

classify(ax, @) = argmax score(x,y, 0)
yel

* linear model score function:

score(x,y, 0 ZH fi(x,y)

e we can also use a neural network for the score
function!

neural layer = affine transform + nonlinearity

(Wm)m n b<o>)
o _/

nonlinearity
affine transform

 thisis a single “layer” of a neural network
* Input vectoris x
» vector of “hidden units” is z(")

10

Nonlinearities

(1) :(W<% n b<0>)

* most common: elementwise application of g
function to each entry in vector

* examples...

tanh:

X: 2.22044x10"

y: 2.22044%x107

12

(logistic) sigmoid:

1

ST exp{—x}

13

rectified linear unit (ReLU): y = max(0, x)

..

14

2-layer network
gn:goy@w+b@)

S:gﬁmngn+yu>

* thisis a 2-layer neural network
* Input vectoris &
* output vectoris s

2-layer neural network for sentiment classification

gn:goy@m+b@)

s — WM L p)

l

5 — score(x, positive,)

'score(x, negative, 6)

Use softmax function to convert scores into probabilities

exp{s1}

> expi{s;}

softmax(s) =
exp{sq}

_ Zz exp{s;} _

score(x, positive, 0)

S = .
score(x, negative, 0)

[exp{score(x,positive,0)} |

P = SOftmaX(S) — | exp{score(x,negative,0)}

Z

7 = exp{score(x, positive, @)} + exp{score(x, negative, 8)}

Why nonlinearities?
2-layer network: z(l) =g (W(mw + b(O))
Szgomngn+un>

written in a single equation:

Szgoymgoy®m+b®)+bm>

 if gis linear, then we can rewrite the above as
a single affine transform

e can you prove this? (use distributivity of
matrix multiplication)

18

Understanding the score function

 score(x, positive, 0)
'score(x, negative,)

score(ax, positive,0) = s1 = ¢ (Wl(l*)

entry 2 of bias vector

1
g@wmw+b@) bp)

score(x, negative, @) = s, = g (W2(1*)

g (W(O):B + b<0>) + b;”)

row vector corresponding to row 2 of W(l)

Parameter sharing

 score(x, positive, 0)

'score(x, negative, 9)/

parameters NOT
shared between labels

\

score(x, positive,0) = s1 = ¢ (Wl(l*)g (W(O)w 4 b(O)) 4 bgl)
score(x, negative, @) = sy =g (FWQ({k)g (W(O)m 4 b(O)) 4 b;l)
parameters

shared between
labels

20

Word Embeddings

“Basic unit” of neural NLP

We'll talk about ways to learn word
embeddings next week

Today: we’ll assume we have word
embeddings as a black box

Word Embeddings

larcamall
right good big
clear strong
long
: possible
| higher bogh
ower likely recent
first
1997 seCopd g
final
Sunday (ks’
Saturday past
MondayFriday July late
Auquét |
eptember carnly
TuesTJP%SZSZaV . P Becember
ednesday Novendieber lastaxt

Turian et al. (2010)

22

Two Ways to Represent Word Embeddings

e V =vocabulary, | V| = size of vocab

e 1:create W|-dimensional “one-hot” vector for
each word, multiply by word embedding matrix:

emb(x) = Wonehot(V,)

Two Ways to Represent Word Embeddings

V| = size of vocab

) = vocabulary,

1: create W| -dimensional “one-hot” vector for
each word, multiply by word embedding matrix:

emb(x) = Wonehot(V,)
» 2:store embeddings in a hash/dictionary data
structure, do lookup to find embedding for word:

emb(x) = lookup(W, x)

Two Ways to Represent Word Embeddings

e V =vocabulary, | V| = size of vocab

e 1:create W|-dimensional “one-hot” vector for
each word, multiply by word embedding matrix:

emb(x) = Wonehot(V,)
» 2:store embeddings in a hash/dictionary data
structure, do lookup to find embedding for word:

emb(x) = lookup(W, x)
 These are equivalent, second can be much faster

(though first can be fast if using sparse
operations)

Encoders

* encoder: a function to represent a word
sequence as a vector

* simplest: average word embeddings:

fa,vg (.’B) — 1T Z emb(xz)

* many other functions possible!

Attention

e attention is a useful generic tool

e often used to replace a sum with an attention-
weighted sum

Attention

attention is a useful generic tool

often used to replace a sum with an attention-
weighted sum

e.g., for a word summing encoder:

|
o (@) =Y att(x,i,) emb(x;)
1=1
|
Z att(z;,i,x) =1
1=1

many other functions possible!

Ling et al. (EMNLP 2015)

* Not All Contexts Are Created Equal: Better
Word Representations with Variable Attention

antartica | | has| | little | | rainfall | | with | | the

continental

Figure 1: Illustration of the inferred attention pa-
rameters for a sentence from our training data
when predicting the word south; darker cells in-
dicate higher weights.

Recurrent Neural Networks

h; = tanh W(xh)x + W, L+ b(h)

“hidden vector” 0 @ @

Neural Similarity Learning

* A common need:
compute similarity/affinity of two things

— maybe two things of the same type,

— two things with different types being mapped to
same space, or

— two things with different types being mapped to
different spaces, but being compared with a
learned similarity function

 Examples?

Synonym Pairs

* Faruqui et al. (NAACL 2014), Wieting et al. (TACL 2014), inter alia

contamination
converged
captioned
outwit
bad
broad
permanent
bed
carefree

absolutely

pollution
convergence
subtitled
thwart
villain
general
permanently
sack
reckless

urgently

Translation Pairs

* Haghighi et al. (ACL 2008), Mikolov et al. (2013), Farugui and Dyer (EACL
2014)

dog hund
man mann
woman frau
city stadt
person man
the der
the die

the das

Sentence Pairs

this was also true for pompeii , where the temple of jupiter that
was already there was enlarged and made more roman when
the romans took over .

this held true for pompeii, where the previously existing temple
of jupiter was enlarged and romanized upon conquest .

WIKIPEDIA WIKIPEDIA

The Free Encyclopedia Simple English

Captions and Images

* Richard Socher, Andrej Karpathy, Quoc V. Le, Christopher D. Manning,
Andrew Y. Ng. “Grounded Compositional Semantics For Finding And
Describing Images With Sentences,” TACL 2014.

Compositional Sentence Vectors Multi-Modal Image Vector Representation

Representations

A small child sits on a cement wall near white flower.

m~\m[

A man wearing a helmet jJumps on his bike near a beach.

——

A man jumping his downhill bike.
11

e

Two airplanes parked in an airport.

>ET®

Questions and Answers

* Mohit lyyer, Jordan Boyd-Graber, Leonardo Claudino, Richard Socher, and
Hal Daumé lll. “A Neural Network for Factoid Question Answering over

Paragraphs,” EMNLP 2014
* Antoine Bordes, Sumit Chopra, and Jason Weston. “Question Answering
with Subgraph Embeddings,” EMNLP 2014.

Score S(qg,a) How the candidate answer
9 _ fits the question

(Embedaing model A\)

Embedding of the ‘

' embedding of the | N @) .
‘ question f(g) v Q ‘G’ subgraph g(a)
- - Dot product - -
Embedding matrix W Embedding matrix W
Binary encoding of El:l T l l I] [l 1 l I} I ?;‘r;a:z:;rgc::r:pg(s)f

~ the question @(g)

| | (1berag - 1987 \I

- Questiong | . KPreston e Honolulu |
“Who did Clooney marry in 19877?" !‘/o Y

| Subgraph of a candidate | ' Model \

U, answer a (here K. Preston) A J.Travog I

entity in the question >

! —_—

Commonsense Knowledge Tuples

I o"
L]

Xiang Li, Aynaz Taheri, Lifu Tu, Kevin Gimpel. “Commonsense Knowledge

Base Completion,” ACL 2016.

<“cake”, UsedFor, “satisfy hunger”>

37

Stories and Endings

* story:

— Jennifer has a big exam tomorrow. She got so
stressed, she pulled an all-nighter. She went into
class the next day, weary as can be. Her teacher
stated that the test is postponed for next week.

* ending:
— Jennifer felt bittersweet about it.

* from ROC Story Corpus (Mostafazadeh et al.,
2016)

* Other examples/applications you can think of?

 Sometimes direction matters, sometimes not

 Sometimes there is a particular kind of
relation being named for each pair, sometimes
not (i.e., just one kind)

Neural Similarity Modeling

“Siamese networks” (Bromley et al., 1993)

— these typically share parameters, hence the name

40

Similarity Modeling

* Siamese networks typically share parameters
across the two networks

* butit’s also common to not share parameters
when the items have different types, but we
still want to relate them in some way

— whether map to same space + compute sim or
map each to some other space + compute sim

Similarity Functions

* many choices for similarity functions
 we’ll go over some in the next few slides

e throughout, keep in mind:
— output range
— symmetric? sim(x1,x2) = sim(xa, 1)
— introduces new parameters?
— connections among similarity functions?

— notes/tips on using these

Dot Product

sim(x1, T2) = T, T2

/

range? R
symmetric or asymmetric? symmetric
introduces parameters? no

43

Cosine Similarity

fBIfEQ

Sim(wlan) — COS(.’,El,CBQ) —

wn—\/za:%
1,1]

range? |—1,

symmetric or asymmetric? symmetric

introduces parameters? no

generalizes anything? dot product when vectors
have norm 1

21| [|2]

Bilinear Function

S1m 2131,132 — Ly W.CBQ

C#

range? R

symmetric or asymmetric? asymmetric in general
introduces parameters? yes

generalizes anything? dot product if 11/ is identity

45

Notes on Using Bilinear Functions

sim(azl, 2132) = -’I/‘IWZBQ

similarity can depend on relation by using different
bilinear weight matrices for different relations:

sim(x1,r, x2) = &, Wyrxs

often 1V is initialized to the identity matrix (and
regularized back to it)

potential issue: W might be very huge

L1/L2 Distances

sim(x1,T2) = ||T1 — 332“3

range? R-,
symmetric or asymmetric? symmetric
introduce parameters? no

Deep Neural Network
sim(ml, (EQ) = DNN(C&t(ZBl, mg))

concatenate vectors, pass to DNN, use scalar for final output:

48

Deep Neural Network
sim(ml, CEQ) = DNN(Cat(ml, (132))

range? depends on nonlinearity
symmetric? asymmetric
introduces parameters? yes
generalizes anything? vyes, can represent any function!

49

Notes on DNN Similarity Functions

since DNNs are so powerful, things could go horribly wrong.
in practice, often pass additional quantities:

Deep Neural Network

similarity can depend on relation:

(“cake”) (“UsedFor”) (“satisfy hunger”)

51

Learning for Similarity

We want to learn input representations as
well as all parameters of sim(x1, z2)

We'll just write all these parameters as 8
How about this?
min Z —sim(azl, 332)

0

(x1,x2)Etrain

Any potential problems with this?

(Better) Learning for Similarity

* Contrastive hinge loss:

min Y [—sim(my,m2) + sim(z1,)]+

(x1,x2)Etrain

al . = max(0,a)

* v isa “negative” example
* Any potential problems with this?

Learning with Neural Networks

classify(ax, @) = argmax score(x,y, 0)
yeLl

score(x, positive,0) = s1 = g (Wl(’l*)g (W(O)az + b(O)) 4 bgl))
score(x, negative, 8) = s, = g (W2(,1*)g (W(()):z: 4 b(O)) 4 bél))

we can use any of our loss functions from before,
as long as we can compute (sub)gradients

algorithm for doing this efficiently:
backpropagation

it’s basically just the chain rule of derivatives

Computation Graphs

e a useful way to represent the computations
performed by a neural model (or any model!)

* why useful? makes it easy to implement
automatic differentiation (backpropagation)

* many neural net toolkits let you define your
model in terms of computation graphs
(Theano, (Py)Torch, TensorFlow, CNTK, DyNet,
PENNE, etc.)

Backpropagation

* backpropagation has become associated with
neural networks, but it’s much more general

* | also use backpropagation to compute
gradients in linear models for structured
prediction

A simple computation graph:

* represents expression “a + 3”

A slightly bigger computation graph:
(+

* represents expression “(a + 3)% + 4a%”

Operators can have more than 2 operands:

* still represents expression “(a + 3)% + 4a%”

Overfitting & Regularization

when we can fit any function, overfitting
becomes a big concern

overfitting: learning a model that does well on

t
C

t

ne training set but doesn’t generalize to new
ata

nere are many strategies to reduce overfitting

(we’ll use the general term regularization for
any such strategy)

yvou used early stopping in Assignment 1,
which is one kind of regularization

61

Regularization Terms

0 = argmin Z loss(x®, y(V. 0) + AR(0)
o =

most common: penalize large parameter values

intuition: large parameters might be instances of
overfitting

examples:
L, regularization: R;,(0) = ||0]|5 = 292

(also called Tikhonov regularlzatlon
or ridge regression)

L, regularization: Ry,1(0) = ||0]]1 = Z 16
(also called basis pursuit or LASSO)

62

Regularization Terms

L, regularization: R,(9)=1/6/)3="> ¢

differentiable, widely-used

L, regularization: R.,(9) = (|0, =) |0

1

not differentiable (but is subdifferentiable)
leads to sparse solutions (many parameters become zero!)

Dropout

e popular regularization method for neural
networks

 randomly “drop out” (set to zero) some of the
vector entries in the layers

64

Optimization Algorithms

* many choices:
— SGD
— AdaGrad
— AdaDelta
— RMSProp
— Adam
— SGD with momentum

 we don’t have time to go through these in class,
but you should try using them! (most toolkits
have implementations of these and others)

2-transformation (1-layer) network
2D = g (W“% n b<o>)
S=4g (W(l)z(l) + b(1)>

/

vector of label scores

we’ll call this a “2-transformation” neural
network, or a “1-layer” neural network

input vectoris @
score vector is S
one hidden vector z(1) (“hidden layer”)

1-layer neural network for sentiment classification
2 = g (W«J)m n b<o>)

s=g (Wu)z(l) n b<1>)
S

 score(x, positive, 0)
'score(x, negative, 6)

Neural Networks for Twitter Part-of-Speech Tagging

det
pref | a
isked fir| yo llast narr

e |et’s use the center word + two words to the right:

r=1[04..0902..0703..06]"
N L J /
Y Y Y

vector for yo vector for last vector for name

e if name is to the right of yo, then yo is probably a form of your
* but our x above uses separate dimensions for each position!

— i.e., name is two words to the right
— what if name is one word to the right?

68

Convolution

C = “feature map”, has an entry for each word position in context window / sentence

r=1[04..0902..0703..06]"
_ VAN AN /
Y Y Y

vector for yo vector for last vector for name

Cl =W : x4
C2 = W - Ld41:2d
C3 = W * L24+1:3d

69

Pooling

C = “feature map”, has an entry for each word position in context window / sentence

how do we convert this into a fixed-length vector?
use pooling:
max-pooling: returns maximum value in ¢
average pooling: returns average of values in ¢

vector for yo vector for last vector for name

Cl =W : x4
Co = W * Ld+1:2d
C3 = W * L2d+1:3d

70

Pooling

C = “feature map”, has an entry for each word position in context window / sentence

how do we convert this into a fixed-length vector?
use pooling:
max-pooling: returns maximum value in ¢
average pooling: returns average of values in ¢

vector foryo vector for last vector for name

Cl =W : x4

then, this single filter v produces a single feature
value (the output of some kind of pooling).

in practice, we use many filters of many different
lengths (e.g., n-grams rather than words).

71

Convolutional Neural Networks

convolutional neural networks (convnets or CNNs) use
filters that are “convolved with” (matched against all
positions of) the input

think of convolution as “perform the same operation
everywhere on the input in some systematic order”

“convolutional layer” = set of filters that are convolved
with the input vector (whether x or hidden vector)

could be followed by more convolutional layers, or by a
type of pooling

often used in NLP to convert a sentence into a feature
vector

Recurrent Neural Networks

h; = tanh W(xh)x + W, L+ b(h)

“hidden vector” 0 @ @

Long Short-Term Memory (LSTM) Recurrent Neural Networks

= ftCt—1 + 13 tanh W(xc>33t +whap, 4 b(c))

h: = o tanh(c;)

74

Backward & Bidirectional LSTMs

bidirectional:
if shallow, just use forward and backward LSTMs in parallel, concatenate
final two hidden vectors, feed to softmax

75

e () () (e
(2-layer)
()

layer 1 <

layer 2 <

Recursive Neural Networks for NLP

* first, run a constituent parser on the sentence

* convert the constituent tree to a binary tree
(each rewrite has exactly two children)

* construct vector for sentence recursively at each
rewrite (“split point”):

A [(:l g)
N

(a) (b) (c)
Android beats 10S

Cost Functions

cost function: scores output against a gold standard

cost : L X L = R>g

should reflect the evaluation metric for your task

usual conventions: cost(y,y) = 0 cost(y,y’) = cost(y', y)

for classification, what cost should we use?

cost(y,y") = Iy # y/']

