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•  Assignment	  3	  due	  tomorrow	  
•  Final	  project	  report	  due	  Friday,	  June	  9	  

–  guidelines	  for	  final	  project	  report	  have	  been	  posted	  

2	  



Modeling,	  Inference,	  Learning	  

Structured	  Predic+on:	  	  
output	  space	  is	  exponenCally-‐sized	  or	  unbounded	  
(we	  can’t	  just	  enumerate	  all	  possible	  outputs)	  

learning:	  choose	  _	  	  	  

modeling:	  define	  	  score	  funcCon	  inference:	  solve	  	  	  	  	  	  	  	  	  	  	  	  	  	  _	  	  
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•  2	  categories	  of	  structured	  predicCon:	  
	  	  	  	  score-‐based	  and	  search-‐based	  
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Score-‐Based	  Structured	  PredicCon	  
•  focus	  on	  defining	  the	  score	  funcCon	  of	  the	  
structured	  input/output	  pair:	  

•  cleanly	  separates	  score	  funcCon,	  inference	  
algorithm,	  and	  training	  loss	  
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Inference	  in	  Score-‐Based	  SP	  
•  inference	  algorithms	  are	  defined	  based	  on	  
decomposiCon	  of	  score	  into	  parts	  

•  smaller	  parts	  =	  easier	  to	  define	  efficient	  exact	  
inference	  algorithms	  
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Loss	  FuncCons	  for	  Score-‐Based	  SP	  
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name	   loss	   where	  used	  

cost	  
(“0-‐1”)	   MERT	  (Och,	  2003)	  

percep-‐
tron	  

structured	  
perceptron	  

(Collins,	  2002)	  

hinge	  
structured	  SVMs	  
(Taskar	  et	  al.,	  
inter	  alia)	  

log	   CRFs	  (Lafferty	  et	  
al.,	  2001)	  

sogmax
-‐margin	  

Povey	  et	  al.	  
(2008),	  Gimpel	  &	  
Smith	  (2010)	  



Inference	  Algorithms	  for	  Score-‐Based	  SP	  

•  dynamic	  programming	  
– exact,	  but	  parts	  must	  be	  small	  for	  efficiency	  

•  dynamic	  programming	  +	  “cube	  pruning”	  
– permits	  approximate	  incorporaCon	  of	  large	  parts	  
(“non-‐local	  features”)	  while	  sCll	  using	  dynamic	  
program	  backbone	  

•  integer	  linear	  programming	  
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Search-‐Based	  Structured	  PredicCon	  
•  focus	  on	  the	  procedure	  for	  searching	  through	  the	  
structured	  output	  space	  (usually	  involves	  simple	  
greedy	  or	  beam	  search)	  

•  design	  a	  classifier	  to	  score	  a	  small	  number	  of	  
decisions	  at	  each	  posiCon	  in	  the	  search	  
•  this	  classifier	  can	  use	  informaCon	  about	  the	  current	  state	  

as	  well	  as	  the	  enCre	  history	  of	  the	  search	  

•  in	  dependency	  parsing,	  this	  is	  called	  “transiCon-‐
based	  parsing”	  because	  it	  consists	  of	  greedily,	  
sequenCally	  deciding	  what	  parsing	  decision	  to	  make	  
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TransiCon-‐Based	  Parsing	  
•  there	  are	  many	  variaCons	  of	  greedy	  parsers	  
that	  build	  parse	  structures	  as	  they	  process	  a	  
sentence	  from	  leg	  to	  right	  
– “shig-‐reduce”,	  “transiCon-‐based”,	  etc.	  

•  these	  form	  the	  backbone	  of	  many	  modern	  
neural	  dependency	  (and	  consCtuency!)	  
parsers	  

•  we’ll	  go	  through	  an	  example	  (thanks	  to	  Noah	  
Smith	  for	  these	  slides!)	  
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Many millennials, of which 50 percent are estimated to have voted, say 
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Many millennials, of which 50 percent are estimated to have voted, say 
political parties must listen to their concerns to get support. 
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Stack: 

See: 
Nivre & Scholz, 2004 
Henderson, 2004 
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34	  Dyer	  et	  al.	  (ACL	  2015)	  



•  Chen	  et	  al.	  (2014)	  used	  a	  feed-‐forward	  
network	  to	  output	  a	  parsing	  decision	  (shig,	  
reduce-‐leg,	  or	  reduce-‐right)	  

•  Dyer	  et	  al.	  (2015)	  used	  RNNs	  to	  model	  the	  
history	  of	  parsing	  decisions,	  the	  parCal	  parses	  
so	  far	  (the	  “stack”),	  and	  the	  sentence	  
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Stack	  RNNs	  

36	  Dyer	  et	  al.	  (ACL	  2015)	  
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Stack	  LSTM	  Parser	  

50   percent  are estimated  to     have voted … 

millennials 

Many 

of 

which 

∅

reduce right 
shift 
shift 

reduce left 
shift 
shift 
∅ 

{shift, reduce right, reduce left} 

Action history: Stack: 

Buffer: 



•  we’ve	  talked	  about	  consCtuency	  and	  
dependency	  parsing	  in	  this	  course	  and	  in	  
31190	  

•  what	  about	  other	  syntacCc	  &	  semanCc	  
formalisms?	  

•  today	  we’ll	  cover	  2	  you	  should	  know	  about:	  
– AMR	  
– CCG	  
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Note:	  slides	  from	  this	  secCon	  have	  been	  removed	  due	  to	  large	  size.	  
Please	  see	  the	  original	  tutorial	  slides	  by	  Schneider/Flanigan/O’Gorman	  



Combinatory	  Categorial	  Grammar	  
(Steedman,	  1987)	  

•  family	  of	  grammars	  that	  focus	  on	  func+on	  
applica+on	  

•  CCGs	  are	  useful	  for	  semanCc	  parsing	  and	  
parsing	  to	  logical	  forms	  

•  in	  one	  simple	  CCG	  instanCaCon,	  there	  are	  only	  
2	  atomic	  types:	  nouns	  (N)	  and	  sentences	  (S)	  
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CCG	  
•  2	  atomic	  types:	  nouns	  (N)	  and	  sentences	  (S)	  
•  complex	  types	  created	  by	  using	  “slash”	  rules;	  
think	  of	  these	  as	  “funcCons”:	  
–  X/Y	  =	  “something	  that	  combines	  with	  a	  Y	  to	  its	  right	  
to	  form	  an	  X”	  

–  X\Y	  =	  “something	  that	  combines	  with	  a	  Y	  to	  its	  le8	  to	  
form	  an	  X”	  

•  Consider	  the	  type	  S\N:	  
– what	  are	  some	  examples	  of	  words	  that	  would	  have	  
this	  type?	  

–  that	  is,	  what	  are	  some	  words	  that,	  when	  preceded	  by	  
a	  noun,	  form	  a	  sentence?	  

–  verbs	  like	  sleeps,	  ate,	  walked	  
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Other	  CCG	  Types	  
•  How	  about	  (S\N)/N?	  

–  transiCve	  verbs:	  likes,	  sees,	  ate,	  etc	  
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2 M A R K S T E E D M A N

(4) a. Mary likes musicals
NP S NP NP NP

S NP
S

b.
NP V NP

VP
S

Mary musicalslikes

It is important to note that such tree-structures are simply a representation of the process of
derivation. They are not structures that need to be built by a processor, nor do they provide
the input to any rules of grammar.
Such categories can be regarded as encoding the semantic type of their translation, and

this translation can be made explicit in the following expanded notation, which associates
a translation with the entire syntactic category, via the colon operator, which is assumed
to have lower precedence than the categorial slash operators. (Agreement features are also
included in the syntactic category, represented as subscripts, much as in Bach 1983. The
feature 3s is “underspecified” for gender and can combine with the more specified 3sm by
a standard unification mechanism that we will pass over here – cf. Shieber 1986.)2

(5) likes := S NP3s NP : like
We must also expand the rules of functional application in the same way:
(6) Forward Application: ( )

X Y : f Y : a X : f a
(7) Backward Application: ( )

Y : a X Y : f X : f a
They yield derivations like the following:
(8) Mary likes musicals

NP3sm : mary S NP3s NP : like NP : musicals
S NP3s : like musicals

S : like musicals mary
The derivation yields an S with a compositional interpretation, equivalent under a conven-
tion of left associativity to like musicals mary .
Coordination might be included in CG via the following rule, allowing constituents of

like type to conjoin to yield a single constituent of the same type: 3

2This notation follows Steedman 1987. Another notation, used in Steedman 1990, associates a unifiable
logical form with each primitive category, so that the same transitive verb appears as follows:
(i) likes := S : like y x NP3s : x NP : y
The advantage is that the predicate-argument structure is built directly by the unification, and that the combi-
nation rules need no further modification. Otherwise the choice is largely a matter of notational convenience.

3The semantics of this rule, or rather rule schema, is somewhat complex, and is omitted here. The rule is
also simplified syntactically in several respects for the present purpose.

Steedman	  (1996)	  

A Very Short Introduction to CCG

Mark Steedman

Draft, November 1, 1996

This paper is intended to provide the shortest possible introduction to Combinatory
Categorial Grammar.

1 Combinatory Grammars.

In Combinatory Categorial Grammar (CCG, Steedman 1987, 1996b), as in other varieties
of Categorial Grammar reviewed by Wood 1993 and exemplified in the bibli0graphy be-
low, elements like verbs are associated with a syntactic “category” which identifies them
as functions, and specifies the type and directionality of their arguments and the type of
their result. We here use the “result leftmost” notation in which a rightward-combining
functor over a domain β into a range α are written α β, while the corresponding leftward-
combining functor is written α β.1 α and β may themselves be function categories. For
example, a transitive verb is a function from (object) NPs into predicates—that is, into
functions from (subject) NPs into S:
(1) likes := S NP NP
(2) Forward Application: ( )

X Y Y X

(3) Backward Application: ( )
Y X Y X

These rules have the form of very general binary PS rule schemata. In fact, pure categorial
grammar is just context-free grammar written in the accepting, rather than the producing,
direction, with a consequent transfer of the major burden of specifying particular grammars
from the PS rules to the lexicon. While it is now convenient to write derivations as in a,
below, they are equivalent to conventional phrase structure derivations b:

The research was supported in part by NSF grant nos. IRI91-17110, IRI95-04372, ARPA grant no.
N66001-94-C6043, and ARO grant no. DAAH04-94-G0426.

1There is an alternative “result on top” notation due to Lambek 1958, according to which the latter category
is written β α.

1

CCG	   PCFG	  



Other	  CCG	  Types	  
•  How	  about	  N/N?	  

– determiners,	  adjecCves,	  nouns	  
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FuncCon	  ApplicaCon	  as	  	  
an	  Isomorphic	  Hierarchical	  Procedure:	  
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2 M A R K S T E E D M A N

(4) a. Mary likes musicals
NP S NP NP NP

S NP
S

b.
NP V NP

VP
S

Mary musicalslikes

It is important to note that such tree-structures are simply a representation of the process of
derivation. They are not structures that need to be built by a processor, nor do they provide
the input to any rules of grammar.
Such categories can be regarded as encoding the semantic type of their translation, and

this translation can be made explicit in the following expanded notation, which associates
a translation with the entire syntactic category, via the colon operator, which is assumed
to have lower precedence than the categorial slash operators. (Agreement features are also
included in the syntactic category, represented as subscripts, much as in Bach 1983. The
feature 3s is “underspecified” for gender and can combine with the more specified 3sm by
a standard unification mechanism that we will pass over here – cf. Shieber 1986.)2

(5) likes := S NP3s NP : like
We must also expand the rules of functional application in the same way:
(6) Forward Application: ( )

X Y : f Y : a X : f a
(7) Backward Application: ( )

Y : a X Y : f X : f a
They yield derivations like the following:
(8) Mary likes musicals

NP3sm : mary S NP3s NP : like NP : musicals
S NP3s : like musicals

S : like musicals mary
The derivation yields an S with a compositional interpretation, equivalent under a conven-
tion of left associativity to like musicals mary .
Coordination might be included in CG via the following rule, allowing constituents of

like type to conjoin to yield a single constituent of the same type: 3

2This notation follows Steedman 1987. Another notation, used in Steedman 1990, associates a unifiable
logical form with each primitive category, so that the same transitive verb appears as follows:
(i) likes := S : like y x NP3s : x NP : y
The advantage is that the predicate-argument structure is built directly by the unification, and that the combi-
nation rules need no further modification. Otherwise the choice is largely a matter of notational convenience.

3The semantics of this rule, or rather rule schema, is somewhat complex, and is omitted here. The rule is
also simplified syntactically in several respects for the present purpose.

the	  part	  ager	  the	  colon	  (:)	  is	  the	  “semanCc”	  component	  



FuncCon	  ApplicaCon	  as	  	  
an	  Isomorphic	  Hierarchical	  Procedure:	  
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It is important to note that such tree-structures are simply a representation of the process of
derivation. They are not structures that need to be built by a processor, nor do they provide
the input to any rules of grammar.
Such categories can be regarded as encoding the semantic type of their translation, and

this translation can be made explicit in the following expanded notation, which associates
a translation with the entire syntactic category, via the colon operator, which is assumed
to have lower precedence than the categorial slash operators. (Agreement features are also
included in the syntactic category, represented as subscripts, much as in Bach 1983. The
feature 3s is “underspecified” for gender and can combine with the more specified 3sm by
a standard unification mechanism that we will pass over here – cf. Shieber 1986.)2

(5) likes := S NP3s NP : like
We must also expand the rules of functional application in the same way:
(6) Forward Application: ( )

X Y : f Y : a X : f a
(7) Backward Application: ( )

Y : a X Y : f X : f a
They yield derivations like the following:
(8) Mary likes musicals

NP3sm : mary S NP3s NP : like NP : musicals
S NP3s : like musicals

S : like musicals mary
The derivation yields an S with a compositional interpretation, equivalent under a conven-
tion of left associativity to like musicals mary .
Coordination might be included in CG via the following rule, allowing constituents of

like type to conjoin to yield a single constituent of the same type: 3

2This notation follows Steedman 1987. Another notation, used in Steedman 1990, associates a unifiable
logical form with each primitive category, so that the same transitive verb appears as follows:
(i) likes := S : like y x NP3s : x NP : y
The advantage is that the predicate-argument structure is built directly by the unification, and that the combi-
nation rules need no further modification. Otherwise the choice is largely a matter of notational convenience.

3The semantics of this rule, or rather rule schema, is somewhat complex, and is omitted here. The rule is
also simplified syntactically in several respects for the present purpose.
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It is important to note that such tree-structures are simply a representation of the process of
derivation. They are not structures that need to be built by a processor, nor do they provide
the input to any rules of grammar.
Such categories can be regarded as encoding the semantic type of their translation, and

this translation can be made explicit in the following expanded notation, which associates
a translation with the entire syntactic category, via the colon operator, which is assumed
to have lower precedence than the categorial slash operators. (Agreement features are also
included in the syntactic category, represented as subscripts, much as in Bach 1983. The
feature 3s is “underspecified” for gender and can combine with the more specified 3sm by
a standard unification mechanism that we will pass over here – cf. Shieber 1986.)2

(5) likes := S NP3s NP : like
We must also expand the rules of functional application in the same way:
(6) Forward Application: ( )

X Y : f Y : a X : f a
(7) Backward Application: ( )

Y : a X Y : f X : f a
They yield derivations like the following:
(8) Mary likes musicals

NP3sm : mary S NP3s NP : like NP : musicals
S NP3s : like musicals

S : like musicals mary
The derivation yields an S with a compositional interpretation, equivalent under a conven-
tion of left associativity to like musicals mary .
Coordination might be included in CG via the following rule, allowing constituents of

like type to conjoin to yield a single constituent of the same type: 3

2This notation follows Steedman 1987. Another notation, used in Steedman 1990, associates a unifiable
logical form with each primitive category, so that the same transitive verb appears as follows:
(i) likes := S : like y x NP3s : x NP : y
The advantage is that the predicate-argument structure is built directly by the unification, and that the combi-
nation rules need no further modification. Otherwise the choice is largely a matter of notational convenience.

3The semantics of this rule, or rather rule schema, is somewhat complex, and is omitted here. The rule is
also simplified syntactically in several respects for the present purpose.



Conclusions	  
•  we’ve	  focused	  on	  core	  techniques	  in	  this	  
course	  

•  hope	  is	  that	  you	  can	  now	  understand	  90%	  of	  
ACL	  papers	  published	  in	  recent	  years	  

•  we’ve	  glossed	  over	  many	  details	  of	  parCcular	  
NLP	  problems	  and	  linguisCc	  theories	  
– some	  of	  that	  was	  covered	  in	  TTIC	  31190:	  NLP	  
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