
TTIC	
 31210:	

Advanced	
 Natural	
 Language	
 Processing	

Kevin	
 Gimpel	

Spring	
 2017	

	

Lecture	
 16:	

Structured	
 PredicCon	
 in	
 NLP,	

SyntacCc	
 &	
 SemanCc	
 Formalisms	

1	

•  Assignment	
 3	
 due	
 tomorrow	

•  Final	
 project	
 report	
 due	
 Friday,	
 June	
 9	

–  guidelines	
 for	
 final	
 project	
 report	
 have	
 been	
 posted	

2	

Modeling,	
 Inference,	
 Learning	

Structured	
 Predic+on:	
 	

output	
 space	
 is	
 exponenCally-­‐sized	
 or	
 unbounded	

(we	
 can’t	
 just	
 enumerate	
 all	
 possible	
 outputs)	

learning:	
 choose	
 _	
 	
 	

modeling:	
 define	
 	
 score	
 funcCon	
 inference:	
 solve	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 _	
 	

3	

•  2	
 categories	
 of	
 structured	
 predicCon:	

	
 	
 	
 	
 score-­‐based	
 and	
 search-­‐based	

4	

Score-­‐Based	
 Structured	
 PredicCon	

•  focus	
 on	
 defining	
 the	
 score	
 funcCon	
 of	
 the	

structured	
 input/output	
 pair:	

•  cleanly	
 separates	
 score	
 funcCon,	
 inference	

algorithm,	
 and	
 training	
 loss	

5	

Inference	
 in	
 Score-­‐Based	
 SP	

•  inference	
 algorithms	
 are	
 defined	
 based	
 on	

decomposiCon	
 of	
 score	
 into	
 parts	

•  smaller	
 parts	
 =	
 easier	
 to	
 define	
 efficient	
 exact	

inference	
 algorithms	

6	

Loss	
 FuncCons	
 for	
 Score-­‐Based	
 SP	

7	

name	
 loss	
 where	
 used	

cost	

(“0-­‐1”)	
 MERT	
 (Och,	
 2003)	

percep-­‐
tron	

structured	

perceptron	

(Collins,	
 2002)	

hinge	

structured	
 SVMs	

(Taskar	
 et	
 al.,	

inter	
 alia)	

log	
 CRFs	
 (Lafferty	
 et	

al.,	
 2001)	

sogmax
-­‐margin	

Povey	
 et	
 al.	

(2008),	
 Gimpel	
 &	

Smith	
 (2010)	

Inference	
 Algorithms	
 for	
 Score-­‐Based	
 SP	

•  dynamic	
 programming	

– exact,	
 but	
 parts	
 must	
 be	
 small	
 for	
 efficiency	

•  dynamic	
 programming	
 +	
 “cube	
 pruning”	

– permits	
 approximate	
 incorporaCon	
 of	
 large	
 parts	

(“non-­‐local	
 features”)	
 while	
 sCll	
 using	
 dynamic	

program	
 backbone	

•  integer	
 linear	
 programming	

8	

Search-­‐Based	
 Structured	
 PredicCon	

•  focus	
 on	
 the	
 procedure	
 for	
 searching	
 through	
 the	

structured	
 output	
 space	
 (usually	
 involves	
 simple	

greedy	
 or	
 beam	
 search)	

•  design	
 a	
 classifier	
 to	
 score	
 a	
 small	
 number	
 of	

decisions	
 at	
 each	
 posiCon	
 in	
 the	
 search	

•  this	
 classifier	
 can	
 use	
 informaCon	
 about	
 the	
 current	
 state	

as	
 well	
 as	
 the	
 enCre	
 history	
 of	
 the	
 search	

•  in	
 dependency	
 parsing,	
 this	
 is	
 called	
 “transiCon-­‐
based	
 parsing”	
 because	
 it	
 consists	
 of	
 greedily,	

sequenCally	
 deciding	
 what	
 parsing	
 decision	
 to	
 make	

9	

TransiCon-­‐Based	
 Parsing	

•  there	
 are	
 many	
 variaCons	
 of	
 greedy	
 parsers	

that	
 build	
 parse	
 structures	
 as	
 they	
 process	
 a	

sentence	
 from	
 leg	
 to	
 right	

– “shig-­‐reduce”,	
 “transiCon-­‐based”,	
 etc.	

•  these	
 form	
 the	
 backbone	
 of	
 many	
 modern	

neural	
 dependency	
 (and	
 consCtuency!)	

parsers	

•  we’ll	
 go	
 through	
 an	
 example	
 (thanks	
 to	
 Noah	

Smith	
 for	
 these	
 slides!)	

10	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

estimated

voted

50

say

listen

get

millennials

Many

of percent are

which to have

parties

political

must

concerns

their

to

to support

Greedy	
 Parsing	
 with	
 a	
 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

See:
Nivre & Scholz, 2004
Henderson, 2004

Greedy	
 Parsing	
 with	
 a	
 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

Greedy	
 Parsing	
 with	
 a	
 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

Many

shift

Greedy	
 Parsing	
 with	
 a	
 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

millennials
Many

shift

Greedy	
 Parsing	
 with	
 a	
 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

Many ← millennials

reduce left

Greedy	
 Parsing	
 with	
 a	
 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

of
Many ← millennials

shift

Greedy	
 Parsing	
 with	
 a	
 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

which
of

Many ← millennials

shift

Greedy	
 Parsing	
 with	
 a	
 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

of → which

Many ← millennials

reduce right

Greedy	
 Parsing	
 with	
 a	
 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

50

of → which
Many ← millennials

shift

Greedy	
 Parsing	
 with	
 a	
 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

percent

50
of → which

Many ← millennials

shift

Greedy	
 Parsing	
 with	
 a	
 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

50 → percent
of → which

Many ← millennials

reduce right

Greedy	
 Parsing	
 with	
 a	
 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

are

50 → percent
of → which

Many ← millennials

shift

Greedy	
 Parsing	
 with	
 a	
 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

estimated

are
50 → percent
of → which

Many ← millennials

shift

Greedy	
 Parsing	
 with	
 a	
 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

to

estimated
are

50 → percent
of → which

Many ← millennials

shift

Greedy	
 Parsing	
 with	
 a	
 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

have

to
estimated

are
50 → percent
of → which

Many ← millennials

shift

Greedy	
 Parsing	
 with	
 a	
 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

voted
have

to
estimated

are
50 → percent
of → which

Many ← millennials

shift

Greedy	
 Parsing	
 with	
 a	
 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

have ← voted

to
estimated

are
50 → percent
of → which

Many ← millennials

reduce left

Greedy	
 Parsing	
 with	
 a	
 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

(to have) ← voted

estimated
are

50 → percent
of → which

Many ← millennials

reduce left

Greedy	
 Parsing	
 with	
 a	
 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

estimated → ((to have) ← voted)

are
50 → percent
of → which

Many ← millennials

reduce right

Greedy	
 Parsing	
 with	
 a	
 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

are ← estimated → ((to have) ← voted)

50 → percent
of → which

Many ← millennials

reduce left

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

estimated

voted

50

say

listen

get

millennials

Many

of percent are

which to have

parties

political

must

concerns

their

to

to support

34	
 Dyer	
 et	
 al.	
 (ACL	
 2015)	

•  Chen	
 et	
 al.	
 (2014)	
 used	
 a	
 feed-­‐forward	

network	
 to	
 output	
 a	
 parsing	
 decision	
 (shig,	

reduce-­‐leg,	
 or	
 reduce-­‐right)	

•  Dyer	
 et	
 al.	
 (2015)	
 used	
 RNNs	
 to	
 model	
 the	

history	
 of	
 parsing	
 decisions,	
 the	
 parCal	
 parses	

so	
 far	
 (the	
 “stack”),	
 and	
 the	
 sentence	

35	

Stack	
 RNNs	

36	
 Dyer	
 et	
 al.	
 (ACL	
 2015)	

37	
 Dyer	
 et	
 al.	
 (ACL	
 2015)	

Stack	
 LSTM	
 Parser	

50 percent are estimated to have voted …

millennials

Many

of

which

∅

reduce right
shift
shift

reduce left
shift
shift
∅

{shift, reduce right, reduce left}

Action history: Stack:

Buffer:

•  we’ve	
 talked	
 about	
 consCtuency	
 and	

dependency	
 parsing	
 in	
 this	
 course	
 and	
 in	

31190	

•  what	
 about	
 other	
 syntacCc	
 &	
 semanCc	

formalisms?	

•  today	
 we’ll	
 cover	
 2	
 you	
 should	
 know	
 about:	

– AMR	

– CCG	

39	

40	

Note:	
 slides	
 from	
 this	
 secCon	
 have	
 been	
 removed	
 due	
 to	
 large	
 size.	

Please	
 see	
 the	
 original	
 tutorial	
 slides	
 by	
 Schneider/Flanigan/O’Gorman	

Combinatory	
 Categorial	
 Grammar	

(Steedman,	
 1987)	

•  family	
 of	
 grammars	
 that	
 focus	
 on	
 func+on	

applica+on	

•  CCGs	
 are	
 useful	
 for	
 semanCc	
 parsing	
 and	

parsing	
 to	
 logical	
 forms	

•  in	
 one	
 simple	
 CCG	
 instanCaCon,	
 there	
 are	
 only	

2	
 atomic	
 types:	
 nouns	
 (N)	
 and	
 sentences	
 (S)	

41	

CCG	

•  2	
 atomic	
 types:	
 nouns	
 (N)	
 and	
 sentences	
 (S)	

•  complex	
 types	
 created	
 by	
 using	
 “slash”	
 rules;	

think	
 of	
 these	
 as	
 “funcCons”:	

–  X/Y	
 =	
 “something	
 that	
 combines	
 with	
 a	
 Y	
 to	
 its	
 right	

to	
 form	
 an	
 X”	

–  X\Y	
 =	
 “something	
 that	
 combines	
 with	
 a	
 Y	
 to	
 its	
 le8	
 to	

form	
 an	
 X”	

•  Consider	
 the	
 type	
 S\N:	

– what	
 are	
 some	
 examples	
 of	
 words	
 that	
 would	
 have	

this	
 type?	

–  that	
 is,	
 what	
 are	
 some	
 words	
 that,	
 when	
 preceded	
 by	

a	
 noun,	
 form	
 a	
 sentence?	

–  verbs	
 like	
 sleeps,	
 ate,	
 walked	

42	

Other	
 CCG	
 Types	

•  How	
 about	
 (S\N)/N?	

–  transiCve	
 verbs:	
 likes,	
 sees,	
 ate,	
 etc	

43	

2 M A R K S T E E D M A N

(4) a. Mary likes musicals
NP S NP NP NP

S NP
S

b.
NP V NP

VP
S

Mary musicalslikes

It is important to note that such tree-structures are simply a representation of the process of
derivation. They are not structures that need to be built by a processor, nor do they provide
the input to any rules of grammar.
Such categories can be regarded as encoding the semantic type of their translation, and

this translation can be made explicit in the following expanded notation, which associates
a translation with the entire syntactic category, via the colon operator, which is assumed
to have lower precedence than the categorial slash operators. (Agreement features are also
included in the syntactic category, represented as subscripts, much as in Bach 1983. The
feature 3s is “underspecified” for gender and can combine with the more specified 3sm by
a standard unification mechanism that we will pass over here – cf. Shieber 1986.)2

(5) likes := S NP3s NP : like
We must also expand the rules of functional application in the same way:
(6) Forward Application: ()

X Y : f Y : a X : f a
(7) Backward Application: ()

Y : a X Y : f X : f a
They yield derivations like the following:
(8) Mary likes musicals

NP3sm : mary S NP3s NP : like NP : musicals
S NP3s : like musicals

S : like musicals mary
The derivation yields an S with a compositional interpretation, equivalent under a conven-
tion of left associativity to like musicals mary .
Coordination might be included in CG via the following rule, allowing constituents of

like type to conjoin to yield a single constituent of the same type: 3

2This notation follows Steedman 1987. Another notation, used in Steedman 1990, associates a unifiable
logical form with each primitive category, so that the same transitive verb appears as follows:
(i) likes := S : like y x NP3s : x NP : y
The advantage is that the predicate-argument structure is built directly by the unification, and that the combi-
nation rules need no further modification. Otherwise the choice is largely a matter of notational convenience.

3The semantics of this rule, or rather rule schema, is somewhat complex, and is omitted here. The rule is
also simplified syntactically in several respects for the present purpose.

Steedman	
 (1996)	

A Very Short Introduction to CCG

Mark Steedman

Draft, November 1, 1996

This paper is intended to provide the shortest possible introduction to Combinatory
Categorial Grammar.

1 Combinatory Grammars.

In Combinatory Categorial Grammar (CCG, Steedman 1987, 1996b), as in other varieties
of Categorial Grammar reviewed by Wood 1993 and exemplified in the bibli0graphy be-
low, elements like verbs are associated with a syntactic “category” which identifies them
as functions, and specifies the type and directionality of their arguments and the type of
their result. We here use the “result leftmost” notation in which a rightward-combining
functor over a domain β into a range α are written α β, while the corresponding leftward-
combining functor is written α β.1 α and β may themselves be function categories. For
example, a transitive verb is a function from (object) NPs into predicates—that is, into
functions from (subject) NPs into S:
(1) likes := S NP NP
(2) Forward Application: ()

X Y Y X

(3) Backward Application: ()
Y X Y X

These rules have the form of very general binary PS rule schemata. In fact, pure categorial
grammar is just context-free grammar written in the accepting, rather than the producing,
direction, with a consequent transfer of the major burden of specifying particular grammars
from the PS rules to the lexicon. While it is now convenient to write derivations as in a,
below, they are equivalent to conventional phrase structure derivations b:

The research was supported in part by NSF grant nos. IRI91-17110, IRI95-04372, ARPA grant no.
N66001-94-C6043, and ARO grant no. DAAH04-94-G0426.

1There is an alternative “result on top” notation due to Lambek 1958, according to which the latter category
is written β α.

1

CCG	
 PCFG	

Other	
 CCG	
 Types	

•  How	
 about	
 N/N?	

– determiners,	
 adjecCves,	
 nouns	

44	

FuncCon	
 ApplicaCon	
 as	
 	

an	
 Isomorphic	
 Hierarchical	
 Procedure:	

45	

2 M A R K S T E E D M A N

(4) a. Mary likes musicals
NP S NP NP NP

S NP
S

b.
NP V NP

VP
S

Mary musicalslikes

It is important to note that such tree-structures are simply a representation of the process of
derivation. They are not structures that need to be built by a processor, nor do they provide
the input to any rules of grammar.
Such categories can be regarded as encoding the semantic type of their translation, and

this translation can be made explicit in the following expanded notation, which associates
a translation with the entire syntactic category, via the colon operator, which is assumed
to have lower precedence than the categorial slash operators. (Agreement features are also
included in the syntactic category, represented as subscripts, much as in Bach 1983. The
feature 3s is “underspecified” for gender and can combine with the more specified 3sm by
a standard unification mechanism that we will pass over here – cf. Shieber 1986.)2

(5) likes := S NP3s NP : like
We must also expand the rules of functional application in the same way:
(6) Forward Application: ()

X Y : f Y : a X : f a
(7) Backward Application: ()

Y : a X Y : f X : f a
They yield derivations like the following:
(8) Mary likes musicals

NP3sm : mary S NP3s NP : like NP : musicals
S NP3s : like musicals

S : like musicals mary
The derivation yields an S with a compositional interpretation, equivalent under a conven-
tion of left associativity to like musicals mary .
Coordination might be included in CG via the following rule, allowing constituents of

like type to conjoin to yield a single constituent of the same type: 3

2This notation follows Steedman 1987. Another notation, used in Steedman 1990, associates a unifiable
logical form with each primitive category, so that the same transitive verb appears as follows:
(i) likes := S : like y x NP3s : x NP : y
The advantage is that the predicate-argument structure is built directly by the unification, and that the combi-
nation rules need no further modification. Otherwise the choice is largely a matter of notational convenience.

3The semantics of this rule, or rather rule schema, is somewhat complex, and is omitted here. The rule is
also simplified syntactically in several respects for the present purpose.

the	
 part	
 ager	
 the	
 colon	
 (:)	
 is	
 the	
 “semanCc”	
 component	

FuncCon	
 ApplicaCon	
 as	
 	

an	
 Isomorphic	
 Hierarchical	
 Procedure:	

46	

2 M A R K S T E E D M A N

(4) a. Mary likes musicals
NP S NP NP NP

S NP
S

b.
NP V NP

VP
S

Mary musicalslikes

It is important to note that such tree-structures are simply a representation of the process of
derivation. They are not structures that need to be built by a processor, nor do they provide
the input to any rules of grammar.
Such categories can be regarded as encoding the semantic type of their translation, and

this translation can be made explicit in the following expanded notation, which associates
a translation with the entire syntactic category, via the colon operator, which is assumed
to have lower precedence than the categorial slash operators. (Agreement features are also
included in the syntactic category, represented as subscripts, much as in Bach 1983. The
feature 3s is “underspecified” for gender and can combine with the more specified 3sm by
a standard unification mechanism that we will pass over here – cf. Shieber 1986.)2

(5) likes := S NP3s NP : like
We must also expand the rules of functional application in the same way:
(6) Forward Application: ()

X Y : f Y : a X : f a
(7) Backward Application: ()

Y : a X Y : f X : f a
They yield derivations like the following:
(8) Mary likes musicals

NP3sm : mary S NP3s NP : like NP : musicals
S NP3s : like musicals

S : like musicals mary
The derivation yields an S with a compositional interpretation, equivalent under a conven-
tion of left associativity to like musicals mary .
Coordination might be included in CG via the following rule, allowing constituents of

like type to conjoin to yield a single constituent of the same type: 3

2This notation follows Steedman 1987. Another notation, used in Steedman 1990, associates a unifiable
logical form with each primitive category, so that the same transitive verb appears as follows:
(i) likes := S : like y x NP3s : x NP : y
The advantage is that the predicate-argument structure is built directly by the unification, and that the combi-
nation rules need no further modification. Otherwise the choice is largely a matter of notational convenience.

3The semantics of this rule, or rather rule schema, is somewhat complex, and is omitted here. The rule is
also simplified syntactically in several respects for the present purpose.

FuncCon	
 ApplicaCon	
 as	
 	

an	
 Isomorphic	
 Hierarchical	
 Procedure:	

47	

2 M A R K S T E E D M A N

(4) a. Mary likes musicals
NP S NP NP NP

S NP
S

b.
NP V NP

VP
S

Mary musicalslikes

It is important to note that such tree-structures are simply a representation of the process of
derivation. They are not structures that need to be built by a processor, nor do they provide
the input to any rules of grammar.
Such categories can be regarded as encoding the semantic type of their translation, and

this translation can be made explicit in the following expanded notation, which associates
a translation with the entire syntactic category, via the colon operator, which is assumed
to have lower precedence than the categorial slash operators. (Agreement features are also
included in the syntactic category, represented as subscripts, much as in Bach 1983. The
feature 3s is “underspecified” for gender and can combine with the more specified 3sm by
a standard unification mechanism that we will pass over here – cf. Shieber 1986.)2

(5) likes := S NP3s NP : like
We must also expand the rules of functional application in the same way:
(6) Forward Application: ()

X Y : f Y : a X : f a
(7) Backward Application: ()

Y : a X Y : f X : f a
They yield derivations like the following:
(8) Mary likes musicals

NP3sm : mary S NP3s NP : like NP : musicals
S NP3s : like musicals

S : like musicals mary
The derivation yields an S with a compositional interpretation, equivalent under a conven-
tion of left associativity to like musicals mary .
Coordination might be included in CG via the following rule, allowing constituents of

like type to conjoin to yield a single constituent of the same type: 3

2This notation follows Steedman 1987. Another notation, used in Steedman 1990, associates a unifiable
logical form with each primitive category, so that the same transitive verb appears as follows:
(i) likes := S : like y x NP3s : x NP : y
The advantage is that the predicate-argument structure is built directly by the unification, and that the combi-
nation rules need no further modification. Otherwise the choice is largely a matter of notational convenience.

3The semantics of this rule, or rather rule schema, is somewhat complex, and is omitted here. The rule is
also simplified syntactically in several respects for the present purpose.

Conclusions	

•  we’ve	
 focused	
 on	
 core	
 techniques	
 in	
 this	

course	

•  hope	
 is	
 that	
 you	
 can	
 now	
 understand	
 90%	
 of	

ACL	
 papers	
 published	
 in	
 recent	
 years	

•  we’ve	
 glossed	
 over	
 many	
 details	
 of	
 parCcular	

NLP	
 problems	
 and	
 linguisCc	
 theories	

– some	
 of	
 that	
 was	
 covered	
 in	
 TTIC	
 31190:	
 NLP	

48	

