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•  Assignment	
  3	
  due	
  tomorrow	
  
•  Final	
  project	
  report	
  due	
  Friday,	
  June	
  9	
  

–  guidelines	
  for	
  final	
  project	
  report	
  have	
  been	
  posted	
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Modeling,	
  Inference,	
  Learning	
  

Structured	
  Predic+on:	
  	
  
output	
  space	
  is	
  exponenCally-­‐sized	
  or	
  unbounded	
  
(we	
  can’t	
  just	
  enumerate	
  all	
  possible	
  outputs)	
  

learning:	
  choose	
  _	
  	
  	
  

modeling:	
  define	
  	
  score	
  funcCon	
  inference:	
  solve	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  _	
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•  2	
  categories	
  of	
  structured	
  predicCon:	
  
	
  	
  	
  	
  score-­‐based	
  and	
  search-­‐based	
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Score-­‐Based	
  Structured	
  PredicCon	
  
•  focus	
  on	
  defining	
  the	
  score	
  funcCon	
  of	
  the	
  
structured	
  input/output	
  pair:	
  

•  cleanly	
  separates	
  score	
  funcCon,	
  inference	
  
algorithm,	
  and	
  training	
  loss	
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Inference	
  in	
  Score-­‐Based	
  SP	
  
•  inference	
  algorithms	
  are	
  defined	
  based	
  on	
  
decomposiCon	
  of	
  score	
  into	
  parts	
  

•  smaller	
  parts	
  =	
  easier	
  to	
  define	
  efficient	
  exact	
  
inference	
  algorithms	
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Loss	
  FuncCons	
  for	
  Score-­‐Based	
  SP	
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name	
   loss	
   where	
  used	
  

cost	
  
(“0-­‐1”)	
   MERT	
  (Och,	
  2003)	
  

percep-­‐
tron	
  

structured	
  
perceptron	
  

(Collins,	
  2002)	
  

hinge	
  
structured	
  SVMs	
  
(Taskar	
  et	
  al.,	
  
inter	
  alia)	
  

log	
   CRFs	
  (Lafferty	
  et	
  
al.,	
  2001)	
  

sogmax
-­‐margin	
  

Povey	
  et	
  al.	
  
(2008),	
  Gimpel	
  &	
  
Smith	
  (2010)	
  



Inference	
  Algorithms	
  for	
  Score-­‐Based	
  SP	
  

•  dynamic	
  programming	
  
– exact,	
  but	
  parts	
  must	
  be	
  small	
  for	
  efficiency	
  

•  dynamic	
  programming	
  +	
  “cube	
  pruning”	
  
– permits	
  approximate	
  incorporaCon	
  of	
  large	
  parts	
  
(“non-­‐local	
  features”)	
  while	
  sCll	
  using	
  dynamic	
  
program	
  backbone	
  

•  integer	
  linear	
  programming	
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Search-­‐Based	
  Structured	
  PredicCon	
  
•  focus	
  on	
  the	
  procedure	
  for	
  searching	
  through	
  the	
  
structured	
  output	
  space	
  (usually	
  involves	
  simple	
  
greedy	
  or	
  beam	
  search)	
  

•  design	
  a	
  classifier	
  to	
  score	
  a	
  small	
  number	
  of	
  
decisions	
  at	
  each	
  posiCon	
  in	
  the	
  search	
  
•  this	
  classifier	
  can	
  use	
  informaCon	
  about	
  the	
  current	
  state	
  

as	
  well	
  as	
  the	
  enCre	
  history	
  of	
  the	
  search	
  

•  in	
  dependency	
  parsing,	
  this	
  is	
  called	
  “transiCon-­‐
based	
  parsing”	
  because	
  it	
  consists	
  of	
  greedily,	
  
sequenCally	
  deciding	
  what	
  parsing	
  decision	
  to	
  make	
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TransiCon-­‐Based	
  Parsing	
  
•  there	
  are	
  many	
  variaCons	
  of	
  greedy	
  parsers	
  
that	
  build	
  parse	
  structures	
  as	
  they	
  process	
  a	
  
sentence	
  from	
  leg	
  to	
  right	
  
– “shig-­‐reduce”,	
  “transiCon-­‐based”,	
  etc.	
  

•  these	
  form	
  the	
  backbone	
  of	
  many	
  modern	
  
neural	
  dependency	
  (and	
  consCtuency!)	
  
parsers	
  

•  we’ll	
  go	
  through	
  an	
  example	
  (thanks	
  to	
  Noah	
  
Smith	
  for	
  these	
  slides!)	
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Many millennials, of which 50 percent are estimated to have voted, say 
political parties must listen to their concerns to get support. 
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Greedy	
  Parsing	
  with	
  a	
  Stack	
  

Many millennials, of which 50 percent are estimated to have voted, say 
political parties must listen to their concerns to get support. 
 
 

Buffer: 

Stack: 

See: 
Nivre & Scholz, 2004 
Henderson, 2004 
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•  Chen	
  et	
  al.	
  (2014)	
  used	
  a	
  feed-­‐forward	
  
network	
  to	
  output	
  a	
  parsing	
  decision	
  (shig,	
  
reduce-­‐leg,	
  or	
  reduce-­‐right)	
  

•  Dyer	
  et	
  al.	
  (2015)	
  used	
  RNNs	
  to	
  model	
  the	
  
history	
  of	
  parsing	
  decisions,	
  the	
  parCal	
  parses	
  
so	
  far	
  (the	
  “stack”),	
  and	
  the	
  sentence	
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Stack	
  RNNs	
  

36	
  Dyer	
  et	
  al.	
  (ACL	
  2015)	
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Stack	
  LSTM	
  Parser	
  

50   percent  are estimated  to     have voted … 

millennials 

Many 

of 

which 

∅

reduce right 
shift 
shift 

reduce left 
shift 
shift 
∅ 

{shift, reduce right, reduce left} 

Action history: Stack: 

Buffer: 



•  we’ve	
  talked	
  about	
  consCtuency	
  and	
  
dependency	
  parsing	
  in	
  this	
  course	
  and	
  in	
  
31190	
  

•  what	
  about	
  other	
  syntacCc	
  &	
  semanCc	
  
formalisms?	
  

•  today	
  we’ll	
  cover	
  2	
  you	
  should	
  know	
  about:	
  
– AMR	
  
– CCG	
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Note:	
  slides	
  from	
  this	
  secCon	
  have	
  been	
  removed	
  due	
  to	
  large	
  size.	
  
Please	
  see	
  the	
  original	
  tutorial	
  slides	
  by	
  Schneider/Flanigan/O’Gorman	
  



Combinatory	
  Categorial	
  Grammar	
  
(Steedman,	
  1987)	
  

•  family	
  of	
  grammars	
  that	
  focus	
  on	
  func+on	
  
applica+on	
  

•  CCGs	
  are	
  useful	
  for	
  semanCc	
  parsing	
  and	
  
parsing	
  to	
  logical	
  forms	
  

•  in	
  one	
  simple	
  CCG	
  instanCaCon,	
  there	
  are	
  only	
  
2	
  atomic	
  types:	
  nouns	
  (N)	
  and	
  sentences	
  (S)	
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CCG	
  
•  2	
  atomic	
  types:	
  nouns	
  (N)	
  and	
  sentences	
  (S)	
  
•  complex	
  types	
  created	
  by	
  using	
  “slash”	
  rules;	
  
think	
  of	
  these	
  as	
  “funcCons”:	
  
–  X/Y	
  =	
  “something	
  that	
  combines	
  with	
  a	
  Y	
  to	
  its	
  right	
  
to	
  form	
  an	
  X”	
  

–  X\Y	
  =	
  “something	
  that	
  combines	
  with	
  a	
  Y	
  to	
  its	
  le8	
  to	
  
form	
  an	
  X”	
  

•  Consider	
  the	
  type	
  S\N:	
  
– what	
  are	
  some	
  examples	
  of	
  words	
  that	
  would	
  have	
  
this	
  type?	
  

–  that	
  is,	
  what	
  are	
  some	
  words	
  that,	
  when	
  preceded	
  by	
  
a	
  noun,	
  form	
  a	
  sentence?	
  

–  verbs	
  like	
  sleeps,	
  ate,	
  walked	
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Other	
  CCG	
  Types	
  
•  How	
  about	
  (S\N)/N?	
  

–  transiCve	
  verbs:	
  likes,	
  sees,	
  ate,	
  etc	
  

43	
  

2 M A R K S T E E D M A N

(4) a. Mary likes musicals
NP S NP NP NP

S NP
S

b.
NP V NP

VP
S

Mary musicalslikes

It is important to note that such tree-structures are simply a representation of the process of
derivation. They are not structures that need to be built by a processor, nor do they provide
the input to any rules of grammar.
Such categories can be regarded as encoding the semantic type of their translation, and

this translation can be made explicit in the following expanded notation, which associates
a translation with the entire syntactic category, via the colon operator, which is assumed
to have lower precedence than the categorial slash operators. (Agreement features are also
included in the syntactic category, represented as subscripts, much as in Bach 1983. The
feature 3s is “underspecified” for gender and can combine with the more specified 3sm by
a standard unification mechanism that we will pass over here – cf. Shieber 1986.)2

(5) likes := S NP3s NP : like
We must also expand the rules of functional application in the same way:
(6) Forward Application: ( )

X Y : f Y : a X : f a
(7) Backward Application: ( )

Y : a X Y : f X : f a
They yield derivations like the following:
(8) Mary likes musicals

NP3sm : mary S NP3s NP : like NP : musicals
S NP3s : like musicals

S : like musicals mary
The derivation yields an S with a compositional interpretation, equivalent under a conven-
tion of left associativity to like musicals mary .
Coordination might be included in CG via the following rule, allowing constituents of

like type to conjoin to yield a single constituent of the same type: 3

2This notation follows Steedman 1987. Another notation, used in Steedman 1990, associates a unifiable
logical form with each primitive category, so that the same transitive verb appears as follows:
(i) likes := S : like y x NP3s : x NP : y
The advantage is that the predicate-argument structure is built directly by the unification, and that the combi-
nation rules need no further modification. Otherwise the choice is largely a matter of notational convenience.

3The semantics of this rule, or rather rule schema, is somewhat complex, and is omitted here. The rule is
also simplified syntactically in several respects for the present purpose.

Steedman	
  (1996)	
  

A Very Short Introduction to CCG

Mark Steedman

Draft, November 1, 1996

This paper is intended to provide the shortest possible introduction to Combinatory
Categorial Grammar.

1 Combinatory Grammars.

In Combinatory Categorial Grammar (CCG, Steedman 1987, 1996b), as in other varieties
of Categorial Grammar reviewed by Wood 1993 and exemplified in the bibli0graphy be-
low, elements like verbs are associated with a syntactic “category” which identifies them
as functions, and specifies the type and directionality of their arguments and the type of
their result. We here use the “result leftmost” notation in which a rightward-combining
functor over a domain β into a range α are written α β, while the corresponding leftward-
combining functor is written α β.1 α and β may themselves be function categories. For
example, a transitive verb is a function from (object) NPs into predicates—that is, into
functions from (subject) NPs into S:
(1) likes := S NP NP
(2) Forward Application: ( )

X Y Y X

(3) Backward Application: ( )
Y X Y X

These rules have the form of very general binary PS rule schemata. In fact, pure categorial
grammar is just context-free grammar written in the accepting, rather than the producing,
direction, with a consequent transfer of the major burden of specifying particular grammars
from the PS rules to the lexicon. While it is now convenient to write derivations as in a,
below, they are equivalent to conventional phrase structure derivations b:

The research was supported in part by NSF grant nos. IRI91-17110, IRI95-04372, ARPA grant no.
N66001-94-C6043, and ARO grant no. DAAH04-94-G0426.

1There is an alternative “result on top” notation due to Lambek 1958, according to which the latter category
is written β α.

1

CCG	
   PCFG	
  



Other	
  CCG	
  Types	
  
•  How	
  about	
  N/N?	
  

– determiners,	
  adjecCves,	
  nouns	
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FuncCon	
  ApplicaCon	
  as	
  	
  
an	
  Isomorphic	
  Hierarchical	
  Procedure:	
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2 M A R K S T E E D M A N

(4) a. Mary likes musicals
NP S NP NP NP

S NP
S

b.
NP V NP

VP
S

Mary musicalslikes

It is important to note that such tree-structures are simply a representation of the process of
derivation. They are not structures that need to be built by a processor, nor do they provide
the input to any rules of grammar.
Such categories can be regarded as encoding the semantic type of their translation, and

this translation can be made explicit in the following expanded notation, which associates
a translation with the entire syntactic category, via the colon operator, which is assumed
to have lower precedence than the categorial slash operators. (Agreement features are also
included in the syntactic category, represented as subscripts, much as in Bach 1983. The
feature 3s is “underspecified” for gender and can combine with the more specified 3sm by
a standard unification mechanism that we will pass over here – cf. Shieber 1986.)2

(5) likes := S NP3s NP : like
We must also expand the rules of functional application in the same way:
(6) Forward Application: ( )

X Y : f Y : a X : f a
(7) Backward Application: ( )

Y : a X Y : f X : f a
They yield derivations like the following:
(8) Mary likes musicals

NP3sm : mary S NP3s NP : like NP : musicals
S NP3s : like musicals

S : like musicals mary
The derivation yields an S with a compositional interpretation, equivalent under a conven-
tion of left associativity to like musicals mary .
Coordination might be included in CG via the following rule, allowing constituents of

like type to conjoin to yield a single constituent of the same type: 3

2This notation follows Steedman 1987. Another notation, used in Steedman 1990, associates a unifiable
logical form with each primitive category, so that the same transitive verb appears as follows:
(i) likes := S : like y x NP3s : x NP : y
The advantage is that the predicate-argument structure is built directly by the unification, and that the combi-
nation rules need no further modification. Otherwise the choice is largely a matter of notational convenience.

3The semantics of this rule, or rather rule schema, is somewhat complex, and is omitted here. The rule is
also simplified syntactically in several respects for the present purpose.

the	
  part	
  ager	
  the	
  colon	
  (:)	
  is	
  the	
  “semanCc”	
  component	
  



FuncCon	
  ApplicaCon	
  as	
  	
  
an	
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  Hierarchical	
  Procedure:	
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2 M A R K S T E E D M A N

(4) a. Mary likes musicals
NP S NP NP NP

S NP
S

b.
NP V NP

VP
S

Mary musicalslikes

It is important to note that such tree-structures are simply a representation of the process of
derivation. They are not structures that need to be built by a processor, nor do they provide
the input to any rules of grammar.
Such categories can be regarded as encoding the semantic type of their translation, and

this translation can be made explicit in the following expanded notation, which associates
a translation with the entire syntactic category, via the colon operator, which is assumed
to have lower precedence than the categorial slash operators. (Agreement features are also
included in the syntactic category, represented as subscripts, much as in Bach 1983. The
feature 3s is “underspecified” for gender and can combine with the more specified 3sm by
a standard unification mechanism that we will pass over here – cf. Shieber 1986.)2

(5) likes := S NP3s NP : like
We must also expand the rules of functional application in the same way:
(6) Forward Application: ( )

X Y : f Y : a X : f a
(7) Backward Application: ( )

Y : a X Y : f X : f a
They yield derivations like the following:
(8) Mary likes musicals

NP3sm : mary S NP3s NP : like NP : musicals
S NP3s : like musicals

S : like musicals mary
The derivation yields an S with a compositional interpretation, equivalent under a conven-
tion of left associativity to like musicals mary .
Coordination might be included in CG via the following rule, allowing constituents of

like type to conjoin to yield a single constituent of the same type: 3

2This notation follows Steedman 1987. Another notation, used in Steedman 1990, associates a unifiable
logical form with each primitive category, so that the same transitive verb appears as follows:
(i) likes := S : like y x NP3s : x NP : y
The advantage is that the predicate-argument structure is built directly by the unification, and that the combi-
nation rules need no further modification. Otherwise the choice is largely a matter of notational convenience.

3The semantics of this rule, or rather rule schema, is somewhat complex, and is omitted here. The rule is
also simplified syntactically in several respects for the present purpose.
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2 M A R K S T E E D M A N

(4) a. Mary likes musicals
NP S NP NP NP

S NP
S

b.
NP V NP
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Mary musicalslikes

It is important to note that such tree-structures are simply a representation of the process of
derivation. They are not structures that need to be built by a processor, nor do they provide
the input to any rules of grammar.
Such categories can be regarded as encoding the semantic type of their translation, and

this translation can be made explicit in the following expanded notation, which associates
a translation with the entire syntactic category, via the colon operator, which is assumed
to have lower precedence than the categorial slash operators. (Agreement features are also
included in the syntactic category, represented as subscripts, much as in Bach 1983. The
feature 3s is “underspecified” for gender and can combine with the more specified 3sm by
a standard unification mechanism that we will pass over here – cf. Shieber 1986.)2

(5) likes := S NP3s NP : like
We must also expand the rules of functional application in the same way:
(6) Forward Application: ( )

X Y : f Y : a X : f a
(7) Backward Application: ( )

Y : a X Y : f X : f a
They yield derivations like the following:
(8) Mary likes musicals

NP3sm : mary S NP3s NP : like NP : musicals
S NP3s : like musicals

S : like musicals mary
The derivation yields an S with a compositional interpretation, equivalent under a conven-
tion of left associativity to like musicals mary .
Coordination might be included in CG via the following rule, allowing constituents of

like type to conjoin to yield a single constituent of the same type: 3

2This notation follows Steedman 1987. Another notation, used in Steedman 1990, associates a unifiable
logical form with each primitive category, so that the same transitive verb appears as follows:
(i) likes := S : like y x NP3s : x NP : y
The advantage is that the predicate-argument structure is built directly by the unification, and that the combi-
nation rules need no further modification. Otherwise the choice is largely a matter of notational convenience.

3The semantics of this rule, or rather rule schema, is somewhat complex, and is omitted here. The rule is
also simplified syntactically in several respects for the present purpose.
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  that	
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