
TTIC	 31210:	
Advanced	 Natural	 Language	 Processing	

Kevin	 Gimpel	
Spring	 2017	

	

Lecture	 16:	
Structured	 PredicCon	 in	 NLP,	

SyntacCc	 &	 SemanCc	 Formalisms	

1	

•  Assignment	 3	 due	 tomorrow	
•  Final	 project	 report	 due	 Friday,	 June	 9	

–  guidelines	 for	 final	 project	 report	 have	 been	 posted	

2	

Modeling,	 Inference,	 Learning	

Structured	 Predic+on:	 	
output	 space	 is	 exponenCally-‐sized	 or	 unbounded	
(we	 can’t	 just	 enumerate	 all	 possible	 outputs)	

learning:	 choose	 _	 	 	

modeling:	 define	 	 score	 funcCon	 inference:	 solve	 	 	 	 	 	 	 	 	 	 	 	 	 	 _	 	

3	

•  2	 categories	 of	 structured	 predicCon:	
	 	 	 	 score-‐based	 and	 search-‐based	

4	

Score-‐Based	 Structured	 PredicCon	
•  focus	 on	 defining	 the	 score	 funcCon	 of	 the	
structured	 input/output	 pair:	

•  cleanly	 separates	 score	 funcCon,	 inference	
algorithm,	 and	 training	 loss	

5	

Inference	 in	 Score-‐Based	 SP	
•  inference	 algorithms	 are	 defined	 based	 on	
decomposiCon	 of	 score	 into	 parts	

•  smaller	 parts	 =	 easier	 to	 define	 efficient	 exact	
inference	 algorithms	

6	

Loss	 FuncCons	 for	 Score-‐Based	 SP	

7	

name	 loss	 where	 used	

cost	
(“0-‐1”)	 MERT	 (Och,	 2003)	

percep-‐
tron	

structured	
perceptron	

(Collins,	 2002)	

hinge	
structured	 SVMs	
(Taskar	 et	 al.,	
inter	 alia)	

log	 CRFs	 (Lafferty	 et	
al.,	 2001)	

sogmax
-‐margin	

Povey	 et	 al.	
(2008),	 Gimpel	 &	
Smith	 (2010)	

Inference	 Algorithms	 for	 Score-‐Based	 SP	

•  dynamic	 programming	
– exact,	 but	 parts	 must	 be	 small	 for	 efficiency	

•  dynamic	 programming	 +	 “cube	 pruning”	
– permits	 approximate	 incorporaCon	 of	 large	 parts	
(“non-‐local	 features”)	 while	 sCll	 using	 dynamic	
program	 backbone	

•  integer	 linear	 programming	

8	

Search-‐Based	 Structured	 PredicCon	
•  focus	 on	 the	 procedure	 for	 searching	 through	 the	
structured	 output	 space	 (usually	 involves	 simple	
greedy	 or	 beam	 search)	

•  design	 a	 classifier	 to	 score	 a	 small	 number	 of	
decisions	 at	 each	 posiCon	 in	 the	 search	
•  this	 classifier	 can	 use	 informaCon	 about	 the	 current	 state	

as	 well	 as	 the	 enCre	 history	 of	 the	 search	

•  in	 dependency	 parsing,	 this	 is	 called	 “transiCon-‐
based	 parsing”	 because	 it	 consists	 of	 greedily,	
sequenCally	 deciding	 what	 parsing	 decision	 to	 make	

9	

TransiCon-‐Based	 Parsing	
•  there	 are	 many	 variaCons	 of	 greedy	 parsers	
that	 build	 parse	 structures	 as	 they	 process	 a	
sentence	 from	 leg	 to	 right	
– “shig-‐reduce”,	 “transiCon-‐based”,	 etc.	

•  these	 form	 the	 backbone	 of	 many	 modern	
neural	 dependency	 (and	 consCtuency!)	
parsers	

•  we’ll	 go	 through	 an	 example	 (thanks	 to	 Noah	
Smith	 for	 these	 slides!)	

10	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

estimated

voted

50

say

listen

get

millennials

Many

of percent are

which to have

parties

political

must

concerns

their

to

to support

Greedy	 Parsing	 with	 a	 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

See:
Nivre & Scholz, 2004
Henderson, 2004

Greedy	 Parsing	 with	 a	 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

Greedy	 Parsing	 with	 a	 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

Many

shift

Greedy	 Parsing	 with	 a	 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

millennials
Many

shift

Greedy	 Parsing	 with	 a	 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

Many ← millennials

reduce left

Greedy	 Parsing	 with	 a	 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

of
Many ← millennials

shift

Greedy	 Parsing	 with	 a	 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

which
of

Many ← millennials

shift

Greedy	 Parsing	 with	 a	 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

of → which

Many ← millennials

reduce right

Greedy	 Parsing	 with	 a	 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

50

of → which
Many ← millennials

shift

Greedy	 Parsing	 with	 a	 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

percent

50
of → which

Many ← millennials

shift

Greedy	 Parsing	 with	 a	 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

50 → percent
of → which

Many ← millennials

reduce right

Greedy	 Parsing	 with	 a	 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

are

50 → percent
of → which

Many ← millennials

shift

Greedy	 Parsing	 with	 a	 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

estimated

are
50 → percent
of → which

Many ← millennials

shift

Greedy	 Parsing	 with	 a	 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

to

estimated
are

50 → percent
of → which

Many ← millennials

shift

Greedy	 Parsing	 with	 a	 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

have

to
estimated

are
50 → percent
of → which

Many ← millennials

shift

Greedy	 Parsing	 with	 a	 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

voted
have

to
estimated

are
50 → percent
of → which

Many ← millennials

shift

Greedy	 Parsing	 with	 a	 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

have ← voted

to
estimated

are
50 → percent
of → which

Many ← millennials

reduce left

Greedy	 Parsing	 with	 a	 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

(to have) ← voted

estimated
are

50 → percent
of → which

Many ← millennials

reduce left

Greedy	 Parsing	 with	 a	 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

estimated → ((to have) ← voted)

are
50 → percent
of → which

Many ← millennials

reduce right

Greedy	 Parsing	 with	 a	 Stack	

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Stack:

are ← estimated → ((to have) ← voted)

50 → percent
of → which

Many ← millennials

reduce left

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

estimated

voted

50

say

listen

get

millennials

Many

of percent are

which to have

parties

political

must

concerns

their

to

to support

34	 Dyer	 et	 al.	 (ACL	 2015)	

•  Chen	 et	 al.	 (2014)	 used	 a	 feed-‐forward	
network	 to	 output	 a	 parsing	 decision	 (shig,	
reduce-‐leg,	 or	 reduce-‐right)	

•  Dyer	 et	 al.	 (2015)	 used	 RNNs	 to	 model	 the	
history	 of	 parsing	 decisions,	 the	 parCal	 parses	
so	 far	 (the	 “stack”),	 and	 the	 sentence	

35	

Stack	 RNNs	

36	 Dyer	 et	 al.	 (ACL	 2015)	

37	 Dyer	 et	 al.	 (ACL	 2015)	

Stack	 LSTM	 Parser	

50 percent are estimated to have voted …

millennials

Many

of

which

∅

reduce right
shift
shift

reduce left
shift
shift
∅

{shift, reduce right, reduce left}

Action history: Stack:

Buffer:

•  we’ve	 talked	 about	 consCtuency	 and	
dependency	 parsing	 in	 this	 course	 and	 in	
31190	

•  what	 about	 other	 syntacCc	 &	 semanCc	
formalisms?	

•  today	 we’ll	 cover	 2	 you	 should	 know	 about:	
– AMR	
– CCG	

39	

40	

Note:	 slides	 from	 this	 secCon	 have	 been	 removed	 due	 to	 large	 size.	
Please	 see	 the	 original	 tutorial	 slides	 by	 Schneider/Flanigan/O’Gorman	

Combinatory	 Categorial	 Grammar	
(Steedman,	 1987)	

•  family	 of	 grammars	 that	 focus	 on	 func+on	
applica+on	

•  CCGs	 are	 useful	 for	 semanCc	 parsing	 and	
parsing	 to	 logical	 forms	

•  in	 one	 simple	 CCG	 instanCaCon,	 there	 are	 only	
2	 atomic	 types:	 nouns	 (N)	 and	 sentences	 (S)	

41	

CCG	
•  2	 atomic	 types:	 nouns	 (N)	 and	 sentences	 (S)	
•  complex	 types	 created	 by	 using	 “slash”	 rules;	
think	 of	 these	 as	 “funcCons”:	
–  X/Y	 =	 “something	 that	 combines	 with	 a	 Y	 to	 its	 right	
to	 form	 an	 X”	

–  X\Y	 =	 “something	 that	 combines	 with	 a	 Y	 to	 its	 le8	 to	
form	 an	 X”	

•  Consider	 the	 type	 S\N:	
– what	 are	 some	 examples	 of	 words	 that	 would	 have	
this	 type?	

–  that	 is,	 what	 are	 some	 words	 that,	 when	 preceded	 by	
a	 noun,	 form	 a	 sentence?	

–  verbs	 like	 sleeps,	 ate,	 walked	

42	

Other	 CCG	 Types	
•  How	 about	 (S\N)/N?	

–  transiCve	 verbs:	 likes,	 sees,	 ate,	 etc	

43	

2 M A R K S T E E D M A N

(4) a. Mary likes musicals
NP S NP NP NP

S NP
S

b.
NP V NP

VP
S

Mary musicalslikes

It is important to note that such tree-structures are simply a representation of the process of
derivation. They are not structures that need to be built by a processor, nor do they provide
the input to any rules of grammar.
Such categories can be regarded as encoding the semantic type of their translation, and

this translation can be made explicit in the following expanded notation, which associates
a translation with the entire syntactic category, via the colon operator, which is assumed
to have lower precedence than the categorial slash operators. (Agreement features are also
included in the syntactic category, represented as subscripts, much as in Bach 1983. The
feature 3s is “underspecified” for gender and can combine with the more specified 3sm by
a standard unification mechanism that we will pass over here – cf. Shieber 1986.)2

(5) likes := S NP3s NP : like
We must also expand the rules of functional application in the same way:
(6) Forward Application: ()

X Y : f Y : a X : f a
(7) Backward Application: ()

Y : a X Y : f X : f a
They yield derivations like the following:
(8) Mary likes musicals

NP3sm : mary S NP3s NP : like NP : musicals
S NP3s : like musicals

S : like musicals mary
The derivation yields an S with a compositional interpretation, equivalent under a conven-
tion of left associativity to like musicals mary .
Coordination might be included in CG via the following rule, allowing constituents of

like type to conjoin to yield a single constituent of the same type: 3

2This notation follows Steedman 1987. Another notation, used in Steedman 1990, associates a unifiable
logical form with each primitive category, so that the same transitive verb appears as follows:
(i) likes := S : like y x NP3s : x NP : y
The advantage is that the predicate-argument structure is built directly by the unification, and that the combi-
nation rules need no further modification. Otherwise the choice is largely a matter of notational convenience.

3The semantics of this rule, or rather rule schema, is somewhat complex, and is omitted here. The rule is
also simplified syntactically in several respects for the present purpose.

Steedman	 (1996)	

A Very Short Introduction to CCG

Mark Steedman

Draft, November 1, 1996

This paper is intended to provide the shortest possible introduction to Combinatory
Categorial Grammar.

1 Combinatory Grammars.

In Combinatory Categorial Grammar (CCG, Steedman 1987, 1996b), as in other varieties
of Categorial Grammar reviewed by Wood 1993 and exemplified in the bibli0graphy be-
low, elements like verbs are associated with a syntactic “category” which identifies them
as functions, and specifies the type and directionality of their arguments and the type of
their result. We here use the “result leftmost” notation in which a rightward-combining
functor over a domain β into a range α are written α β, while the corresponding leftward-
combining functor is written α β.1 α and β may themselves be function categories. For
example, a transitive verb is a function from (object) NPs into predicates—that is, into
functions from (subject) NPs into S:
(1) likes := S NP NP
(2) Forward Application: ()

X Y Y X

(3) Backward Application: ()
Y X Y X

These rules have the form of very general binary PS rule schemata. In fact, pure categorial
grammar is just context-free grammar written in the accepting, rather than the producing,
direction, with a consequent transfer of the major burden of specifying particular grammars
from the PS rules to the lexicon. While it is now convenient to write derivations as in a,
below, they are equivalent to conventional phrase structure derivations b:

The research was supported in part by NSF grant nos. IRI91-17110, IRI95-04372, ARPA grant no.
N66001-94-C6043, and ARO grant no. DAAH04-94-G0426.

1There is an alternative “result on top” notation due to Lambek 1958, according to which the latter category
is written β α.

1

CCG	 PCFG	

Other	 CCG	 Types	
•  How	 about	 N/N?	

– determiners,	 adjecCves,	 nouns	

44	

FuncCon	 ApplicaCon	 as	 	
an	 Isomorphic	 Hierarchical	 Procedure:	

45	

2 M A R K S T E E D M A N

(4) a. Mary likes musicals
NP S NP NP NP

S NP
S

b.
NP V NP

VP
S

Mary musicalslikes

It is important to note that such tree-structures are simply a representation of the process of
derivation. They are not structures that need to be built by a processor, nor do they provide
the input to any rules of grammar.
Such categories can be regarded as encoding the semantic type of their translation, and

this translation can be made explicit in the following expanded notation, which associates
a translation with the entire syntactic category, via the colon operator, which is assumed
to have lower precedence than the categorial slash operators. (Agreement features are also
included in the syntactic category, represented as subscripts, much as in Bach 1983. The
feature 3s is “underspecified” for gender and can combine with the more specified 3sm by
a standard unification mechanism that we will pass over here – cf. Shieber 1986.)2

(5) likes := S NP3s NP : like
We must also expand the rules of functional application in the same way:
(6) Forward Application: ()

X Y : f Y : a X : f a
(7) Backward Application: ()

Y : a X Y : f X : f a
They yield derivations like the following:
(8) Mary likes musicals

NP3sm : mary S NP3s NP : like NP : musicals
S NP3s : like musicals

S : like musicals mary
The derivation yields an S with a compositional interpretation, equivalent under a conven-
tion of left associativity to like musicals mary .
Coordination might be included in CG via the following rule, allowing constituents of

like type to conjoin to yield a single constituent of the same type: 3

2This notation follows Steedman 1987. Another notation, used in Steedman 1990, associates a unifiable
logical form with each primitive category, so that the same transitive verb appears as follows:
(i) likes := S : like y x NP3s : x NP : y
The advantage is that the predicate-argument structure is built directly by the unification, and that the combi-
nation rules need no further modification. Otherwise the choice is largely a matter of notational convenience.

3The semantics of this rule, or rather rule schema, is somewhat complex, and is omitted here. The rule is
also simplified syntactically in several respects for the present purpose.

the	 part	 ager	 the	 colon	 (:)	 is	 the	 “semanCc”	 component	

FuncCon	 ApplicaCon	 as	 	
an	 Isomorphic	 Hierarchical	 Procedure:	

46	

2 M A R K S T E E D M A N

(4) a. Mary likes musicals
NP S NP NP NP

S NP
S

b.
NP V NP

VP
S

Mary musicalslikes

It is important to note that such tree-structures are simply a representation of the process of
derivation. They are not structures that need to be built by a processor, nor do they provide
the input to any rules of grammar.
Such categories can be regarded as encoding the semantic type of their translation, and

this translation can be made explicit in the following expanded notation, which associates
a translation with the entire syntactic category, via the colon operator, which is assumed
to have lower precedence than the categorial slash operators. (Agreement features are also
included in the syntactic category, represented as subscripts, much as in Bach 1983. The
feature 3s is “underspecified” for gender and can combine with the more specified 3sm by
a standard unification mechanism that we will pass over here – cf. Shieber 1986.)2

(5) likes := S NP3s NP : like
We must also expand the rules of functional application in the same way:
(6) Forward Application: ()

X Y : f Y : a X : f a
(7) Backward Application: ()

Y : a X Y : f X : f a
They yield derivations like the following:
(8) Mary likes musicals

NP3sm : mary S NP3s NP : like NP : musicals
S NP3s : like musicals

S : like musicals mary
The derivation yields an S with a compositional interpretation, equivalent under a conven-
tion of left associativity to like musicals mary .
Coordination might be included in CG via the following rule, allowing constituents of

like type to conjoin to yield a single constituent of the same type: 3

2This notation follows Steedman 1987. Another notation, used in Steedman 1990, associates a unifiable
logical form with each primitive category, so that the same transitive verb appears as follows:
(i) likes := S : like y x NP3s : x NP : y
The advantage is that the predicate-argument structure is built directly by the unification, and that the combi-
nation rules need no further modification. Otherwise the choice is largely a matter of notational convenience.

3The semantics of this rule, or rather rule schema, is somewhat complex, and is omitted here. The rule is
also simplified syntactically in several respects for the present purpose.

FuncCon	 ApplicaCon	 as	 	
an	 Isomorphic	 Hierarchical	 Procedure:	

47	

2 M A R K S T E E D M A N

(4) a. Mary likes musicals
NP S NP NP NP

S NP
S

b.
NP V NP

VP
S

Mary musicalslikes

It is important to note that such tree-structures are simply a representation of the process of
derivation. They are not structures that need to be built by a processor, nor do they provide
the input to any rules of grammar.
Such categories can be regarded as encoding the semantic type of their translation, and

this translation can be made explicit in the following expanded notation, which associates
a translation with the entire syntactic category, via the colon operator, which is assumed
to have lower precedence than the categorial slash operators. (Agreement features are also
included in the syntactic category, represented as subscripts, much as in Bach 1983. The
feature 3s is “underspecified” for gender and can combine with the more specified 3sm by
a standard unification mechanism that we will pass over here – cf. Shieber 1986.)2

(5) likes := S NP3s NP : like
We must also expand the rules of functional application in the same way:
(6) Forward Application: ()

X Y : f Y : a X : f a
(7) Backward Application: ()

Y : a X Y : f X : f a
They yield derivations like the following:
(8) Mary likes musicals

NP3sm : mary S NP3s NP : like NP : musicals
S NP3s : like musicals

S : like musicals mary
The derivation yields an S with a compositional interpretation, equivalent under a conven-
tion of left associativity to like musicals mary .
Coordination might be included in CG via the following rule, allowing constituents of

like type to conjoin to yield a single constituent of the same type: 3

2This notation follows Steedman 1987. Another notation, used in Steedman 1990, associates a unifiable
logical form with each primitive category, so that the same transitive verb appears as follows:
(i) likes := S : like y x NP3s : x NP : y
The advantage is that the predicate-argument structure is built directly by the unification, and that the combi-
nation rules need no further modification. Otherwise the choice is largely a matter of notational convenience.

3The semantics of this rule, or rather rule schema, is somewhat complex, and is omitted here. The rule is
also simplified syntactically in several respects for the present purpose.

Conclusions	
•  we’ve	 focused	 on	 core	 techniques	 in	 this	
course	

•  hope	 is	 that	 you	 can	 now	 understand	 90%	 of	
ACL	 papers	 published	 in	 recent	 years	

•  we’ve	 glossed	 over	 many	 details	 of	 parCcular	
NLP	 problems	 and	 linguisCc	 theories	
– some	 of	 that	 was	 covered	 in	 TTIC	 31190:	 NLP	

48	

