TTIC 31210:
Advanced Natural Language Processing

Kevin Gimpel
Spring 2017

Lecture 16:
Structured Prediction in NLP,
Syntactic & Semantic Formalisms

* Assignment 3 due tomorrow

* Final project report due Friday, June 9
— guidelines for final project report have been posted

Modeling, Inference, Learning

inference: solve argmax | 'modeling: define score function

N ¥

classify(x, 0) = argmax score(z,y, 0)
y /

learning: choose @

Structured Prediction:
output space is exponentially-sized or unbounded
(we can’t just enumerate all possible outputs)

e 2 categories of structured prediction:
score-based and search-based

Score-Based Structured Prediction

e focus on defining the score function of the
structured input/output pair:

score(x,y, Q)

* cleanly separates score function, inference
algorithm, and training loss

Inference in Score-Based SP

* inference algorithms are defined based on
decomposition of score into parts

score(x,y,0) = Z score(x,., Y, 0)
(T,.,Y) Eparts(T,Y)

* smaller parts = easier to define efficient exact
inference algorithms

Loss Functions for Score-Based SP

name loss where used
cost ,
(“0-17) cost(y, predict(x, 9)) MERT (Och, 2003)
, structured
percep- —SCOI'G(ZU, y, 9) —l_ ma;X SCOI"e(ZE, y , 9) perceptron
tron y (Collins, 2002)
, , structured SVMs
hinge —score(x, y, 0) + H,}!a;x (score(x,y’, 0) + cost(y,y')) | (Taskaretal,
inter alia)
| —score(x, y, 0) + log Z exp {score(x,y’,0)} CRFs (Lafferty et
8 " al., 2001)
Povey et al.
softmax | —score(x, y, 0) + log Z exp {score(z,y’, 0) + cost(y,y’)} (2008). éimpel &
-margin

y/

Smith (2010)

Inference Algorithms for Score-Based SP

* dynamic programming
— exact, but parts must be small for efficiency
e dynamic programming + “cube pruning”

— permits approximate incorporation of large parts
(“non-local features”) while still using dynamic
program backbone

* integer linear programming

Search-Based Structured Prediction

e focus on the procedure for searching through the
structured output space (usually involves simple
greedy or beam search)

e design a classifier to score a small number of
decisions at each position in the search

e this classifier can use information about the current state
as well as the entire history of the search

* in dependency parsing, this is called “transition-
based parsing” because it consists of greedily,
sequentially deciding what parsing decision to make

Transition-Based Parsing

* there are many variations of greedy parsers
that build parse structures as they process a
sentence from left to right

)

— “shift-reduce”, “transition-based”, etc.

* these form the backbone of many modern
neural dependency (and constituency!)
parsers

* we’ll go through an example (thanks to Noah
Smith for these slides!)

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

say
/\“Sten
millennials ﬂ\
I\/Ian/\ ~ must 0
y estimated parties \ get
A/‘/'R \ concerns re
political } to support
of percent are voted their

{ }
which 50 to have

Greedy Parsing with a Stack

Stack:
See:
Nivre & Scholz, 2004
Henderson, 2004
)
Buffer:

!

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Greedy Parsing with a Stack

Stack:

Buffer:

!

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Greedy Parsing with a Stack

Stack:

shift

=)
Many

Buffer:

!

millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Greedy Parsing with a Stack

Stack:

shift

-

millennials
Many

Buffer:

!

of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Greedy Parsing with a Stack

Stack:

reduce left

-

Many «— millennials

!

of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Greedy Parsing with a Stack

Stack:

shift

-

of
Many «— millennials

!

which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Greedy Parsing with a Stack

Stack:
shift
- .
which
of
Many «— millennials
Buffer:

!

50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Greedy Parsing with a Stack

Stack:

reduce right

of — which
Many «— millennials

!

50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Greedy Parsing with a Stack

Stack:
shift
=)
50
of — which
Many <« millennials
Buffer:

!

percent are estimated to have voted, say

political parties must listen to their concerns to get support.

Greedy Parsing with a Stack

Stack:
shift
percent
50
of — which
Many «— millennials
Buffer:

!

are estimated to have voted, say
political parties must listen to their concerns to get support.

Greedy Parsing with a Stack

reduce right

Stack:
-
50 — percent
of — which
Many «— millennials
Buffer:

!

are estimated to have voted, say

political parties must listen to their concerns to get support.

Greedy Parsing with a Stack

Stack:
shift
- are
50 — percent
of — which
Many «— millennials
Buffer:

!

estimated to have voted, say
political parties must listen to their concerns to get support.

Greedy Parsing with a Stack

Stack:
" cstimated shift
are
50 — percent
of — which
Many «— millennials
Buffer:

!

to have voted, say
political parties must listen to their concerns to get support.

Greedy Parsing with a Stack

Stack:

- to _
estimated shift

are
50 — percent
of — which
Many «— millennials

Buffer:

!

have voted, say
political parties must listen to their concerns to get support.

Greedy Parsing with a Stack

Stack:

- have

to
estimated shift
are
50 — percent
of — which
Many < millennials

Buffer:

voted, say
political parties must listen to their concerns to get support.

Greedy Parsing with a Stack

Stack:

-

voted
have
to _
estimated shift
are
50 — percent

of — which

Many <« millennials

Buffer:

say
political parties must listen to their concerns to get support.

Greedy Parsing with a Stack

Stack:

-

have < voted
to
estimated reduce left
are
50 — percent
of — which
Many < millennials

Buffer:

say
political parties must listen to their concerns to get support.

Greedy Parsing with a Stack

Stack:

-

(to have) < voted
estimated reduce left

are
50 — percent
of — which
Many «— millennials

Buffer:

say
political parties must listen to their concerns to get support.

Greedy Parsing with a Stack

Stack:
estimated — ((to have) < voted)
are
50 — percent
of — which
Many «— millennials
Buffer:

reduce right

say

political parties must listen to their concerns to get support.

Greedy Parsing with a Stack

Stack:

- are «— estimated — ((to have) « voted)
50 — percent
of — which
Many «— millennials

Buffer:

reduce left

say

political parties must listen to their concerns to get support.

say

/\ listen
millennials ﬂ\
/\

_ must 1O
Many estimated parties \ get
A/‘/'R \ concerns ‘e
political } to support
of percent are voted their

{ }
which 50 to have

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Stack; Buffer; | Action Stack; 1 Buffer;,; | Dependency
(w,u), (v,v),S B REDUCE-RIGHT(r) | (gr(u,Vv),u), S B u— v
(w,u), (v,v),S B REDUCE-LEFT(r) | (gr(v,u),v),S B u v

S (u,u), B | SHIFT (u,u),S B -

Figure 3: Parser transitions indicating the action applied to the stack and buffer and the resulting stack

and buffer states. Bold symbols indicate (learned) embeddings of words and relations, script symbols
indicate the corresponding words and relations.

Dyer et al. (ACL 2015) 34

 Chen et al. (2014) used a feed-forward
network to output a parsing decision (shift,
reduce-left, or reduce-right)

* Dyer et al. (2015) used RNNs to model the
history of parsing decisions, the partial parses
so far (the “stack”), and the sentence

Stack RNNs

Yo Y1 Yo yi Yo Y1 yo
1 f pop 1 f push 1 f f
é 1 (3 i é) N f 71

Figure 1: A stack LSTM extends a conventional left-to-right LSTM with the addition of a stack pointer
(notated as TOP in the figure). This figure shows three configurations: a stack with a single element (left),
the result of a pop operation to this (middle), and then the result of applying a push operation (right).
The boxes in the lowest rows represent stack contents, which are the inputs to the LSTM, the upper rows
are the outputs of the LSTM (in this paper, only the output pointed to by TOP is ever accessed), and the
middle rows are the memory cells (the ¢;’s and h;’s) and gates. Arrows represent function applications
(usually affine transformations followed by a nonlinearity), refer to §2.1 for specifics.

Dyer et al. (ACL 2015) 36

[et | T P

an Vf\ decision was made ROOT

overhasty QZ
«— REDUCE-LEFT(amod)

A — SHIFT

= —b
= —

Figure 2: Parser state computation encountered while parsing the sentence “an overhasty decision was
made.” Here S designates the stack of partially constructed dependency subtrees and its LSTM encod-
ing; B is the buffer of words remaining to be processed and its LSTM encoding; and A is the stack
representing the history of actions taken by the parser. These are linearly transformed, passed through a
ReL.U nonlinearity to produce the parser state embedding p;. An affine transformation of this embedding
is passed to a softmax layer to give a distribution over parsing decisions that can be taken.

Dyer et al. (ACL 2015) 37

Stack LSTM Parser

{shift, reduce right, reduce left}
afly

~ s ﬁ -~
— J W< reduce right
d @ shift
e shift
lenniai o W< reduce left
mlinnla E>.’ & shift
mle shift

Many AN >
5 %)

s off ~
ool ll<: ll<: l|<:
T afy afy afy
Buffer: 50 percent are estimated to have voted ..

Stack: ’ Action history:

 we’ve talked about constituency and
dependency parsing in this course and in

31190

* what about other syntactic & semantic
formalisms?

* today we’ll cover 2 you should know about:
— AMR
— CCG

The Logic of AMR

Practical, , Graph-Based
Sentence Semantics for NLP

Nathan Schneider University of Edinburgh
Jeff Flanigan CMU
Tim O’'Gorman CU-Boulder

- ee— R

Note: slides from this section have been removed due to large size.
Please see the original tutorial slides by Schneider/Flanigan/O’Gorman

W B =l 7NN

Combinatory Categorial Grammar
(Steedman, 1987)

e family of grammars that focus on function
application

* CCGs are useful for semantic parsing and
parsing to logical forms

* in one simple CCG instantiation, there are only
2 atomic types: nouns (N) and sentences (S)

CCG

2 atomic types: nouns (N) and sentences (S)

complex types created by using “slash” rules;
think of these as “functions”:

— X/Y = “something that combines with a Y to its right
to form an X”

— X\Y = “something that combines with a Y to its left to
form an X”

Consider the type S\N:

— what are some examples of words that would have
this type?

— that is, what are some words that, when preceded by
a noun, form a sentence?

— verbs like sleeps, ate, walked

Other CCG Types

 How about (S\N)/N?
— transitive verbs: likes, sees, ate, etc

CCG PCFG
a. Mary likes musicals b. Mary likes musicals
NP (S\NP)/NP NP] NP\ V\ /NP
. S\<NP S /VP

Forward Application: (>)
XY Y = X

Backward Application: (<)

Y X\Y - X Steedman (1996)

Other CCG Types

e How about N/N?
— determiners, adjectives, nouns

Function Application as
an Isomorphic Hierarchical Procedure:

likes := (S\INP3s) /NP : like'

the part after the colon (:) is the “semantic” component

Function Application as
an Isomorphic Hierarchical Procedure:

We must also expand the rules of functional application in the same way:
(6) Forward Application: (>)
X/Y:f Yia = X:fa

(7) Backward Application: (<)
Y:a X\Y:f = X:fa

Function Application as
an Isomorphic Hierarchical Procedure:

(5) likes := (S\NP3;)/NP : like'
We must also expand the rules of functional application in the same way:

(6) Forward Application: (>)
X/Y:f Y:ia = X:fa

(7) Backward Application: (<)
Y:a X\Y:f = X:fa

They yield derivations like the following:
(8) Mary likes musicals
NP3y, - mary' (S\NP3,) /NP : like'’ NP : musicals'’
S\NPj3; : like'musicals’ g

<

S : like'musicals'mary

Conclusions

 we’ve focused on core techniques in this
course

* hope is that you can now understand 90% of
ACL papers published in recent years

 we've glossed over many details of particular
NLP problems and linguistic theories

— some of that was covered in TTIC 31190: NLP

